Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chin J Nat Med ; 20(11): 805-813, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36427915

RESUMEN

Psoraleae Fructus (PF) is an important traditional herbal medicine with a long history of clinical application. It is widely used to treat various diseases, such as osteoporosis, leucoderma and diarrhea. As a traditional nontoxic herb, it has aroused worldwide concern about the potential risks due to increasing adverse reaction events. This article reviews the botany, ancient records of medical uses, adverse reactions, toxicological research advance and detoxification methods of PF. According to clinical studies, liver injury is the most predominant in PF-related adverse reactions. The underlying mechanisms include bile acid metabolism and transport disorders, oxidative stress, mitochondrial damage, inhibition of liver cell regeneration and inflammatory reactions. Furthermore, the potential toxins of PF are summarized. Traditional methods of processing and compatibility will provide reference for reducing the toxicity of PF, which requires further research. In sum, this work systematically summarizes the reserach progress on the safety of PF, which will provide comprehensive insights into the toxicity of PF and facilitate its safe use and future development.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/toxicidad , Frutas/toxicidad , Hígado
2.
Chem Biol Interact ; 365: 110089, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35934134

RESUMEN

BACKGROUND & AIMS: Polygonum multiflorum Thunb. (PMT) is the most common traditional Chinese medicine used to treat multiple diseases, and the hepatotoxicity caused by PMT has made great concern around world. Recent results showed that emodin is the potential toxic components of PMT, but the molecular mechanisms of emodin on liver toxicity remain to be elucidated. METHODS: Evaluation of parent- and metabolite-induced cytotoxicity in emodin were compared in L02 cells and mouse model from the perspective of drug metabolizing enzymes. The effect and mechanism of emodin-induced hepatotoxicity were analyzed using electrophoretic mobility shift, promoter reporter, and high content screening. RESULTS: We showed that emodin treatment (360 mg/kg in mice, 50 µM in L02 cells) induced hepatotoxicity and enhanced reactive oxidative stress (ROS) level. Importantly, emodin-induced ROS accumulation and hepatotoxicity were attenuated in the condition of CH223191, a selective inhibitor of aryl hydrocarbon receptor (AhR), and aggravated by 3-methylcholanthrene, a selective activator of AhR. Interestingly, we performed the study on ROS mediated ER stress and mitochondrial dysfunction in emodin-induced hepatotoxicity, the results showed that emodin can decrease MMP and trigger ER stress with Ca2+ overloading and the expression of ATF4 increasing, further resulted with increased apoptosis in L02 cells and mice mortality rate, while the changes were alleviated by CH223191. Furthermore, the 5-hydroxyemodin, a metabolite by emodin through CYP1A2 enzyme, showed more severe hepatotoxicity compared to emodin. CONCLUSIONS: Our results validated that the metabolism of emodin to 5-hydroxyemodin by CYP1A played an important role in the hepatocellular toxicity of emodin and provided evidence that CYP1A1 and AhR could be used to predict and validate patient-specific liver injury of PMT or other herbs containing emodin.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Emodina , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocromo P-450 CYP1A1/metabolismo , Emodina/toxicidad , Metilcolantreno , Ratones , Especies Reactivas de Oxígeno , Receptores de Hidrocarburo de Aril/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2721-2728, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35718492

RESUMEN

This study aims to unveil the effect of ophiopogonin D(OPD) on isoproterenol(ISO)-induced apoptosis of rat cardiomyocytes and the possible targets, which is expected to provide clues for further research on the myocardial protection of ophiopogonins. Cell count kit-8(CCK-8) assay was used to detect viability of cells treated with OPD and ISO, Western blot to examine the effect of OPD and ISO on the expression of endoplasmic reticulum stress-related Bip, Bax, Perk, ATF4, caspase-12, and CHOP, flow cytometry to determine cell apoptosis rate, and Hoechst 33258 and Tunel staining to observe cell apoptosis and morphological changes. In addition, the probe for calcium ion-specific detection was employed to investigate calcium ion release from the endoplasmic reticulum, and OPD-bond epoxy-activated agarose solid-phase microspheres were prepared and used as affinity matrix to capture OPD-binding target proteins in H9 c2 cell lysate. For the target proteins of OPD identified by high-resolution mass spectrometry, the related signal pathways were enriched and the potential targets of OPD against cardiomyocyte injury were discussed. The experimental result showed that 10 µmol·L~(-1) ISO can significantly induce the expression of endoplasmic reticulum stress-related proteins and promote cell apoptosis. Different concentration of OPD can prevent the damage of myocardial cells caused by ISO. According to mass spectrometry results, 19 proteins, including Fam129 a and Pdia6, were involved in multiple signaling pathways such as the unfolded protein reaction bound by the ERN1 sensor, tricarboxylic acid cycle, and Nrf2 signal transduction pathway. The above results indicate that OPD protects cardiomyocytes by regulating multiple signaling pathways of target proteins and affecting cell cycle progression.


Asunto(s)
Miocitos Cardíacos , Espirostanos , Animales , Apoptosis , Calcio/farmacología , Estrés del Retículo Endoplásmico , Isoproterenol/toxicidad , Ratas , Saponinas , Espirostanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...