Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.172
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132031, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705325

RESUMEN

Bacterially infected wounds are a serious threat to patients' lives and health, and multifunctional dressings with antimicrobial properties and healing promotion are urgently needed. Thus, we used the cationic and anionic properties of chitosan (CS)-nerol (N) derivative (CSN) and carboxymethylcellulose (CMC) to prepare asymmetric layer-by-layer self-assembled (LBL) composite films (CSN-CMC LBL films) with antibacterial and healing properties using a spin-coating method. SEM images showed that the CSN-CMC LBL films had completely different degrees of roughness at the bottom (hydrophilic layer) and at the top (hydrophobic layer), with the roughness at the top increasing as the number of layers increased. The CSN and CMC were used to prepare asymmetric LBL films via the electrostatic attraction of -COO- and NH3+. In addition, adhesion and water contact angle tests showed that the CSN-CMC LBL films had enhanced tissue adhesion and good hydrophobicity. These materials had excellent antimicrobial activity and good biocompatibility. Importantly, the animal infection model results showed that CSN-CMC-8 LBL films effectively eliminated the infection in vivo, inhibited inflammation, promoted vascular regeneration, accelerated the epithelialization process, and achieved high quality healing. Overall, the CSN-CMC LBL films in this study showed considerable potential for application in infected wound healing.

2.
BMC Microbiol ; 24(1): 160, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724904

RESUMEN

BACKGROUND: Antibiotic-associated diarrhea (AAD) refers to symptoms of diarrhea that cannot be explained by other causes after the use of antibiotics. AAD is thought to be caused by a disruption of intestinal ecology due to antibiotics. Fecal Microbiota Transplantation (FMT) is a treatment method that involves transferring microbial communities from the feces of healthy individuals into the patient's gut. METHOD: We selected 23 AAD patients who received FMT treatment in our department. Before FMT, we documented patients' bowel movement frequency, abdominal symptoms, routine blood tests, and inflammatory markers, and collected fecal samples for 16S rRNA sequencing to observe changes in the intestinal microbiota. Patients' treatment outcomes were followed up 1 month and 3 months after FMT. RESULTS: Out of the 23 AAD patients, 19 showed a clinical response to FMT with alleviation of abdominal symptoms. Among them, 82.61% (19/23) experienced relief from diarrhea, 65% (13/20) from abdominal pain, 77.78% (14/18) from abdominal distension, and 57.14% (4/7) from bloody stools within 1 month after FMT. Inflammatory markers IL-8 and CRP significantly decreased after FMT, but there were no noticeable changes in WBC, IL-6, and TNF-α before and after transplantation. After FMT, the abundance of Bacteroides and Faecalibacterium increased in patients' fecal samples, while the abundance of Escherichia-Shigella and Veillonella decreased. CONCLUSION: FMT has a certain therapeutic effect on AAD, and can alleviate abdominal symptoms and change the intestinal microbiota of patients.


Asunto(s)
Antibacterianos , Diarrea , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Diarrea/microbiología , Diarrea/terapia , Trasplante de Microbiota Fecal/métodos , Femenino , Masculino , Persona de Mediana Edad , Antibacterianos/efectos adversos , Heces/microbiología , Adulto , ARN Ribosómico 16S/genética , Anciano , Resultado del Tratamiento , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
3.
Cell Signal ; 120: 111219, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723737

RESUMEN

Cardiac remodeling is a critical process following myocardial infarction (MI), potentially leading to heart failure if untreated. The significance of mitochondrial homeostasis in MI remains insufficiently understood. Samm50 is an essential component of mitochondria. Our study aimed to investigate its role in hypoxia-induced cardiac injury and the underlying mechanisms. First, we observed that Samm50 was dynamically downregulated in mice with MI compared to the control mice. In vitro, Samm50 was also downregulated in oxygen-glucose-deprived neonatal rat cardiomyocytes and fibroblasts. Overexpression and knockdown of Samm50 mitigated and exacerbated cardiac apoptosis and fibrosis, while also improving and worsening mitochondrial homeostasis, respectively. Protein interactions with Samm50 during the protective process were identified via immune-coprecipitation/mass spectroscopy. Mechanistically, serine hydroxymethyltransferase 2 (Shmt2) interacted with Samm50, acting as a crucial element in the protective process by hindering the transfer of Bax from the cytoplasm to the mitochondria and subsequent activation of caspase-3. Inhibition of Shmt2 diminished the protective effect of Samm50 overexpression against cardiac injury. Finally, Samm50 overexpression in vivo mitigated cardiac remodeling and enhanced cardiac function in both acute and chronic MI. In conclusion, Samm50 overexpression mitigated hypoxia-induced cardiac remodeling by inhibiting apoptosis and fibrosis, with Shmt2 acting as a key regulator in this protective process. The Samm50/Shmt2 axis represents a newly discovered mitochondria-related pathway for mitigating hypoxia-induced cardiac injury.

4.
BMC Cancer ; 24(1): 576, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730348

RESUMEN

OBJECTIVE: Nasopharyngeal adenoid cystic carcinoma (NACC) is a rare malignancy with special biological features. Controversies exist regarding the treatment approach and prognostic factors in the IMRT era. This study aimed to evaluate the long-term outcomes and management approaches in NACC. METHODS: Fifty patients with NACC at our institution between 2010 and 2020 were reviewed. Sixteen patients received primary radiotherapy (RT), and 34 patients underwent primary surgery. RESULTS: Between January 2010 and October 2020, a total of 50 patients with pathologically proven NACC were included in our analysis. The median follow-up time was 58.5 months (range: 6.0-151.0 months). The 5-year overall survival rate (OS) and progression-free survival rate (PFS) were 83.9% and 67.5%, respectively. The 5-year OS rates of patients whose primary treatment was surgery and RT were 90.0% and 67.3%, respectively (log-rank P = 0.028). The 5-year PFS rates of patients whose primary treatment was surgery or RT were 80.8% and 40.7%, respectively (log-rank P = 0.024). Multivariate analyses showed that nerve invasion and the pattern of primary treatment were independent factors associated with PFS. CONCLUSIONS: Due to the relative insensitivity to radiation, primary surgery seemed to provide a better chance of disease control and improved survival in NACC. Meanwhile, postoperative radiotherapy should be performed for advanced stage or residual tumours. Cranial nerve invasion and treatment pattern might be important factors affecting the prognosis of patients with NACC.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Humanos , Carcinoma Adenoide Quístico/radioterapia , Carcinoma Adenoide Quístico/mortalidad , Carcinoma Adenoide Quístico/patología , Carcinoma Adenoide Quístico/cirugía , Masculino , Femenino , Radioterapia de Intensidad Modulada/métodos , Persona de Mediana Edad , Adulto , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/patología , Anciano , Estudios Retrospectivos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/patología , Adulto Joven , Pronóstico , Tasa de Supervivencia , Resultado del Tratamiento , Estudios de Seguimiento , Adolescente , Supervivencia sin Progresión
5.
J Anim Sci Biotechnol ; 15(1): 70, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730308

RESUMEN

BACKGROUND: Carcass traits are crucial indicators of meat production efficiency. However, the molecular regulatory mechanisms associated with these traits remain unclear. RESULTS: In this study, we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms. Based on association analyses with the elastic net (EN) model, we identified 12 candidate genes (AMY1A, AP3B2, CEBPG, EEF2, EIF4EBP1, FGFR1, FOXD3, GOLM1, LOC107052698, PABPC1, SERPINB6 and TBC1D16) for 4 carcass-related traits, namely live weight, dressed weight, eviscerated weight, and breast muscle weight. SERPINB6 was identified as the only overlapping gene by 3 analyses, EN model analysis, weighted gene co-expression network analysis and differential expression analysis. Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts. Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression. Furthermore, a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3'UTR of SERPINB6. CONCLUSIONS: Collectively, our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation. Additionally, the downstream variant rs317934171 regulates SERPINB6 expression. These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.

6.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716199

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Asunto(s)
Infecciones por Coronavirus , Suplementos Dietéticos , Lacticaseibacillus rhamnosus , Virus de la Diarrea Epidémica Porcina , Probióticos , Enfermedades de los Porcinos , Animales , Porcinos , Probióticos/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/terapia , Estrés Oxidativo , Intestinos/patología , Polvos , Mucosa Intestinal/patología
7.
Sci Adv ; 10(18): eadj3435, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691593

RESUMEN

Quantum entanglement and decoherence are the two counterforces of many quantum technologies and protocols. For example, while quantum teleportation is fueled by a pair of maximally entangled resource qubits, it is vulnerable to decoherence. Here, we propose an efficient quantum teleportation protocol in the presence of pure decoherence and without entangled resource qubits entering the Bell-state measurement. Instead, we use multipartite hybrid entanglement between the auxiliary qubits and their local environments within the open-quantum system context. With a hybrid-entangled initial state, it is the decoherence that allows us to achieve high fidelities. We demonstrate our protocol in an all-optical experiment.

8.
Sci Total Environ ; : 173148, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735334

RESUMEN

The concentration of 56 volatile organic compounds (VOCs) in the ambient air of Shenyang was continuously monitored at four sites in 2021. The characteristics, sources, secondary pollution potential and health risks of VOCs in different functional regions of Shenyang were discussed. The results indicate that the concentration of VOCs in industrial regions was significantly higher than that in non-industrial regions, with a mean of 41.09 ±â€¯69.82 parts per billion volumes (ppbv) compared to 19.99 ±â€¯17.86 ppbv (commercial & residential region in urban fringe), 27.51 ±â€¯28.81 ppbv (educational & scenic region) and 29.71 ±â€¯23.97 ppbv (commercial & residential region in urban center). The positive matrix factorization (PMF) model was utilized to assign the sources of VOCs in Shenyang, and six factors were recognized: gasoline vehicles (34.8 %), diesel vehicles (28.3 %), combustion (11.4 %), biogenic emissions (9.7 %), industrial processes (8.2 %), and fuel evaporation (7.7 %). The results of the reactivity evaluation indicated that the ozone (O3) formation potential (OFP) was primarily influenced by industrial processes (29.2 %), diesel vehicles (25.7 %), biogenic emissions (17.0 %). These three factors were also the top three contributors to secondary organic aerosol formation potential (SOAP), accounting for 44.2 %, 9.4 % and 30.3 %, respectively. At the all four sites, the non-carcinogenic and carcinogenic risks of VOCs ranged from 1.6 × 10-2 to 3.8 × 10-2 and from 2.3 × 10-6 to 3.3 × 10-6, respectively. And the main risks can be attributed to emissions from industrial processes and gasoline vehicles. These findings suggested to strengthen the control of vehicle emissions throughout all regions in Shenyang and industrial processes emissions in industrial regions.

9.
Dig Dis Sci ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653944

RESUMEN

OBJECTIVE: To explore the expression of the ten eleven translocation (TET) 2 protein in early esophageal squamous cell carcinoma (EESCC), precancerous lesions, and cell lines and to evaluate the effect of TET2 on the functional behavior of EC109 esophageal cancer cells. METHODS: Thirty-one samples of EESCC and precancerous lesions collected via endoscopic submucosal dissection at Taihe Hospital, Shiyan, from February 1, 2017, to February 1, 2019, were analyzed. The study involved evaluating TET2 expression levels in lesion tissue and adjacent normal epithelium, correlating these with clinical pathological features. Techniques including 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, cell scratch assays, flow cytometry for propidium iodide (PI) staining, Hoechst 333258/PI double staining, and nude mouse tumorigenesis experiments were employed to assess the effect of TET2 on the proliferation, migration, cell cycle, apoptosis, and tumorigenic ability of esophageal cancer cells. RESULTS: TET2 expression was notably reduced in early esophageal cancer tissue and correlated with tumor invasion depth (P < 0.05). Overexpression of TET2 enhanced the proliferation and migration of esophageal cancer cells, increased the cell population in the G0 phase, decreased it in the S phase, and intensified cell necrosis (P < 0.05). There was a partial increase in tumorigenic ability (P = 0.087). CONCLUSION: TET2 downregulation in ESCC potentially influences the necrosis, cell cycle, and tumorigenic ability of esophageal cancer cells, suggesting a role in the onset and progression of esophageal cancer.

10.
Front Microbiol ; 15: 1378070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655081

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the pig industry. Yeast polysaccharides (YP) has been used as a feed additive in recent years and poses good anti-inflammatory and antiviral effects. The present study aimed to explore the protective effect of YP on intestinal damage in PEDV-infected piglets. Eighteen 7-day-old piglets with similar body weights were randomly divided into three groups: Control group (basal diet), PEDV group (basal diet), and PEDV+YP group (basal diet +20 mg/kg BW YP), six replicates per group and one pig per replicate. Piglets in PEDV group and PEDV+YP group were orally given PEDV (dose: 1 × 106 TCID50) at 19:30 PM on the 8th day of the experiment. The control group received the same volume of PBS solution. Weight was taken on an empty stomach in the morning of the 11th day, blood was collected and then anesthetic was administered with pentobarbital sodium (50 mg/kg·BW) by intramuscular injection, and samples were slaughtered after the anesthetic was complete. The results showed that YP could alleviate the destruction of intestinal villus morphology of piglets caused by PEDV. Meanwhile, PEDV infection can reduce the activity of glutathione peroxidase, superoxide dismutase and catalase, and increase the content of malondialdehyde. YP can improve the antioxidative capacity in the serum and small intestine of PEDV-infected piglets. In addition, YP inhibited the replication of PEDV in the jejunum ileum and colon. Moreover, YP can regulate the mRNA levels of inflammatory genes (IL-1ß and iNOS) and lipid metabolic genes (APOA4 and APOC3) in the small intestine. In summary, YP could inhibit virus replicates, improve intestinal morphology, enhance antioxidant capacity, relieve inflammation and regulate the metabolism of the intestine in PEDV-infected piglets.

11.
Ann Intern Med ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639542

RESUMEN

BACKGROUND: Time-restricted eating (TRE) lowers body weight in many studies. Whether TRE induces weight loss independent of reductions in calorie intake, as seen in rodent studies, is unknown. OBJECTIVE: To determine the effect of TRE versus a usual eating pattern (UEP) on body weight in the setting of stable caloric intake. DESIGN: Randomized, isocaloric feeding study. (ClinicalTrials.gov: NCT03527368). SETTING: Clinical research unit. PARTICIPANTS: Adults with obesity and prediabetes or diet-controlled diabetes. INTERVENTION: Participants were randomly assigned 1:1 to TRE (10-hour eating window, 80% of calories before 1 p.m.) or UEP (≤16-hour window, ≥50% of calories after 5 p.m.) for 12 weeks. Both groups had the same nutrient content and were isocaloric with total calories determined at baseline. MEASUREMENTS: Primary outcome was change in body weight at 12 weeks. Secondary outcomes were fasting glucose, homeostatic model assessment for insulin resistance (HOMA-IR), glucose area under the curve by oral glucose tolerance test, and glycated albumin. We used linear mixed models to evaluate the effect of interventions on outcomes. RESULTS: All 41 randomly assigned participants (mean age, 59 years; 93% women; 93% Black race; mean BMI, 36 kg/m2) completed the intervention. Baseline weight was 95.6 kg (95% CI, 89.6 to 101.6 kg) in the TRE group and 103.7 kg (CI, 95.3 to 112.0 kg) in the UEP group. At 12 weeks, weight decreased by 2.3 kg (CI, 1.0 to 3.5 kg) in the TRE group and by 2.6 kg (CI, 1.5 to 3.7 kg) in the UEP group (average difference TRE vs. UEP, 0.3 kg [CI, -1.2 to 1.9 kg]). Change in glycemic measures did not differ between groups. LIMITATION: Small, single-site study; baseline differences in weight by group. CONCLUSION: In the setting of isocaloric eating, TRE did not decrease weight or improve glucose homeostasis relative to a UEP, suggesting that any effects of TRE on weight in prior studies may be due to reductions in caloric intake. PRIMARY FUNDING SOURCE: American Heart Association.

12.
J Biophotonics ; : e202300568, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651324

RESUMEN

We investigate the efficacy of photodynamic antimicrobial chemotherapy (PACT) and its combination with an antibiotic in the treatment of diabetic foot ulcers (DFUs) in rats using a novel cationic amino acid porphyrin-based photosensitizer. The research findings demonstrate that the combination of novel cationic photosensitizer-mediated PACT and an antibiotic exhibits significant therapeutic efficacy in treating deep ulcers in a rat model of DFUs. Moreover, the PACT + Antibiotic group displays enhanced angiogenesis, improved tissue maturation, and superior wound healing effect. Micro-computed tomography examination showed that the periosteal reaction was most obvious in the PACT + Antibiotic group. The cortical bone volume ratio (BV/TV), the bone mineral density, and trabecular thickness were significantly higher in the PACT + Antibiotic group than in the model group (p < 0.05). The combination of PACT and antibiotic plays a sensitizing therapeutic role, which provides a new idea for the clinical treatment of DFUs.

13.
Eur Respir J ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636990

RESUMEN

BACKGROUND: Accelerated lung function decline is characteristic of chronic obstructive pulmonary disease (COPD). However, the association between blood eosinophil counts and lung function decline, accounting for current smoking status, in young individuals without prevalent lung disease is not fully understood. METHODS: This is a cohort study of 629 784 Korean adults without COPD or a history of asthma at baseline who participated in health screening examinations including spirometry and differential white blood cell counts. We used linear mixed effects model to estimate the annual change in FEV1 (mL) by baseline blood eosinophil count, adjusting for covariates including smoking status. We also performed a stratified analysis by baseline and time-varying smoking status. RESULTS: During a mean follow-up of 6.5 years (maximum of 17.8 years), the annual change in FEV1 (95% confidence interval [CI]) in participants with eosinophil counts <100, 100-199, 200-299, 300-499, and ≥500 cells/µL in the fully adjusted model were -23.3 (-23.9, -22.7), -24.3 (-24.9, -23.7), -24.8 (-25.5, -24.2), -25.5 (-26.2, -24.8), and -26.8 (-27.7, -25.9) mL, respectively. When stratified by smoking status, participants with higher eosinophil count had a faster decline in FEV1 than those with lower eosinophil count in both never- and ever-smokers, which persisted when time-varying smoking status was used. CONCLUSIONS: Blood eosinophil counts were associated with a faster lung function decline among healthy individuals without lung disease, independent of smoking status. The findings suggest that blood eosinophil counts contribute to the risk of faster lung function decline, particularly among younger adults without a history of lung disease.

14.
Front Microbiol ; 15: 1357470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572230

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has caused severe damage to the global pig industry in the past 20 years, creating an urgent demand for the development of associated medications. Flavonoids have emerged as promising candidates for combating coronaviruses. It is believed that certain flavonoids can directly inhibit the 3C-like protease (3CLpro), thus displaying antiviral activity against coronaviruses. In this investigation, we applied a flavonoid library to screen for natural compounds against PEDV 3CLpro. Baicalein and baicalin were found to efficiently inhibit PEDV 3CLproin vitro, with the IC50 value of 9.50 ± 1.02 µM and 65.80 ± 6.57 µM, respectively. A docking analysis supported that baicalein and baicalin might bind to the active site and binding pocket of PEDV 3CLpro. Moreover, both baicalein and baicalin successfully suppressed PEDV replication in Vero and LLC-PK1 cells, as indicated by reductions in viral RNA, protein, and titer. Further investigation revealed that baicalein and baicalin mainly inhibited the early viral replication of the post-entry stage. Furthermore, baicalein showed potential effects on the attachment or invasion step of PEDV. Collectively, our findings provide experimental proof for the inhibitory effects of baicalein and baicalin on PEDV 3CLpro activity and PEDV infection. These discoveries may introduce novel therapeutic strategies for controlling porcine epidemic diarrhea (PED).

15.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591686

RESUMEN

Metal-Organic Polymers (MOPs) have attracted growing attention for lithium-ion battery (LIB) applications due to their merits in orderly ionic transportation and robust structure stability in electrochemical reactions. However, they suffer from poor electronic conductivity. In this work, we apply first-principles density functional theory to explore the potential of three one-dimensional (1D) electrically conductive C6H2S4TM (TM = Fe, Co, and Ni) MOPs with the π-d conjugated coordination as anode materials for Li+ ions storage. Our theoretical results reveal that these 1D MOPs possess a superior theoretical capacity of over 748 mA h g-1. In particular, the 1D C6H2S4Ni MOP shows an exceptional theoretical specific capacity of 1110 mA h g-1 based on the three-electron transferring reaction, which significantly outperforms the traditional graphite-based anode material in LIBs. Moreover, the resonant charge transfer between Ni metal and ligand within the 1D C6H2S4Ni MOP reduces the diffusion energy barrier of the Li atoms when they migrate on the surface of the MOP. The ultrahigh theoretical specific capacity of the C6H2S4Ni MOP predicts that it can be a promising anode material for LIBs.

16.
Biosensors (Basel) ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667195

RESUMEN

Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin. The platform utilized dopamine (DA)-functionalized gold nanoparticles (Au NPs) as the capturing substrate and 4-mercaptophenylboronic acid (4-MPBA)-modified silver nanoparticles (Ag NPs) acting as the SERS probe. Here, the Au NPs were functionalized with mercaptosuccinic acid (MSA) for DA capture. In the presence of TYR, DA immobilized on the MN is preferentially oxidized to dopamine quinone (DQ), a process that results in a decreased density of SERS probes on the platform. TYR concentration was detected through variations in the signal intensity emitted by the phenylboronic acid. The detection system was able to evaluate TYR concentrations within a linear range of 0.05 U/mL to 200 U/mL and showed robust anti-interference capabilities. The proposed platform, integrating MN-based in situ sensing, SERS technology, and TYR responsiveness, holds significant importance for diagnosing cutaneous melanoma.


Asunto(s)
Técnicas Biosensibles , Detección Precoz del Cáncer , Melanoma , Monofenol Monooxigenasa , Espectrometría Raman , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Monofenol Monooxigenasa/análisis , Monofenol Monooxigenasa/metabolismo , Piel/enzimología , Animales , Ratones , Melanoma/diagnóstico , Melanoma/enzimología , Nanopartículas del Metal/química , Oro/química , Agujas/normas , Ensayo de Inmunoadsorción Enzimática , Plata/química , Sensibilidad y Especificidad , Detección Precoz del Cáncer/instrumentación , Detección Precoz del Cáncer/métodos
17.
Biomed Pharmacother ; 174: 116523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574627

RESUMEN

Inflammatory bowel disease is linked to a higher occurrence of bone loss. Oxyberberine can effectively improve experimental inflammatory bowel disease. However, no study has shown the effect of oxyberberine on inflammatory bowel disease induced bone loss. The present study was performed to investigate the role of oxyberberine in inflammatory bowel disease induced osteoporosis in chronic inflammatory bowel disease mice model. The inflammatory bowel disease mice were orally given two doses of oxyberberine daily. Blood, colon, and bone specimens were collected for biomarker assessments and histological examinations. Bone biomechanical properties and key proteins and genes involved in the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway were evaluated. Additionally, the binding characteristics of oxyberberine and receptor activator of nuclear factor kappa-B ligand were evaluated by in silico simulation. Results indicated that oxyberberine treatment significantly attenuated the macroscopic damage, colonic shortening, and histological injury from the colon. Furthermore, oxyberberine decreased serum inflammatory cytokine levels. The intervention with oxyberberine significantly mitigated the deterioration of bone mass, biomechanical properties, and microstructural parameters. Moreover, the upregulated osteoclast formation factors in model mice were significantly abolished by oxyberberine. In silico simulation results also showed that oxyberberine was firmly bound with target protein. Hence, our findings indicated that oxyberberine had the potential to mitigate inflammatory bowel disease induced inflammation in bone, inhibit osteoclast formation through regulating the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway, and might be a valuable approach in preventing bone loss associated with inflammatory bowel disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , FN-kappa B , Osteoporosis , Ligando RANK , Transducción de Señal , Animales , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/metabolismo , Osteoporosis/prevención & control , FN-kappa B/metabolismo , Ratones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/patología , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Berberina/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Citocinas/metabolismo
18.
Acta Pharmacol Sin ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514862

RESUMEN

Disturbances in intestinal immune homeostasis predispose susceptible individuals to type 1 diabetes (T1D). G-protein-coupled receptor 41 (GPR41) is a receptor for short-chain fatty acids (SCFAs) mainly produced by gut microbiota, which plays key roles in maintaining intestinal homeostasis. In this study, we investigated the role of GPR41 in the progression of T1D. In non-obese diabetic (NOD) mice, we found that aberrant reduction of GPR41 expression in the pancreas and colons was associated with the development of T1D. GPR41-deficient (Gpr41-/-) mice displayed significantly exacerbated streptozotocin (STZ)-induced T1D compared to wild-type mice. Furthermore, Gpr41-/- mice showed enhanced gut immune dysregulation and increased migration of gut-primed IFN-γ+ T cells to the pancreas. In bone marrow-derived dendritic cells from Gpr41-/- mice, the expression of suppressor of cytokine signaling 3 (SOCS) was significantly inhibited, while the phosphorylation of STAT3 was significantly increased, thus promoting dendritic cell (DC) maturation. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (BMDC) from Gpr41-/- mice accelerated T1D in irradiated NOD mice. We conclude that GPR41 is essential for maintaining intestinal and pancreatic immune homeostasis and acts as a negative regulator of DC maturation in T1D. GPR41 may be a potential therapeutic target for T1D.

19.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38531838

RESUMEN

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Interferencia de ARN , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ARN Bicatenario/metabolismo , Transgenes , Animales Modificados Genéticamente/metabolismo , ARN Interferente Pequeño/genética
20.
Life (Basel) ; 14(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541729

RESUMEN

The aim of this study was to investigate the effects of dietary l-glutamine (Gln) supplementation on the morphology and function of the intestine and the growth of muscle in piglets. In this study, sixteen 21-day-old piglets were randomly divided into two groups: the Control group (fed a basal diet) and the Gln group (fed a basal diet supplemented with 0.81% Gln). Blood, gut, and muscle samples were collected from all piglets on Day 20 of the trial. Compared with the Control group, the supplementation of Gln increased (p < 0.05) the villus height, villus width, villus surface area, and villus height/crypt depth ratio of the small intestine. Furthermore, the supplementation of Gln increased (p < 0.05) total protein, total protein/DNA, and RNA/DNA in both the jejunum and ileum. It also increased (p < 0.05) the concentrations of carnosine and citrulline in the jejunal mucosa, as well as citrulline and cysteine concentrations in the ileum. Conversely, Gln supplementation decreased (p < 0.05) Gln concentrations in both the jejunum and ileum, along with ß-aminoisobutyric acid and 1-Methylhistidine concentrations, specifically in the ileum. Subsequent research revealed that Gln supplementation increased (p < 0.05) the mRNA levels for glutathione-S-transferase omega 2 and interferon-ß in the duodenum. In addition, Gln supplementation led to an increase (p < 0.05) in the number of Lactobacillus genus in the colon, but a decrease (p < 0.05) in the level of HSP70 in the jejunum and the activity of diamine oxidase in plasma. Also, Gln supplementation reduced (p < 0.05) the mRNA levels of glutathione-S-transferase omega 2 and interferon stimulated genes, such as MX1, OAS1, IFIT1, IFIT2, IFIT3, and IFIT5 in both the jejunum and ileum, and the numbers of Clostridium coccoides, Enterococcus genus, and Enterobacterium family in the colon. Moreover, Gln supplementation enhanced (p < 0.05) the concentrations of total protein, RNA/DNA, and total protein/DNA ratio in the longissimus dorsi muscle, the concentrations of citrulline, ornithine, arginine, and hydroxyproline, and the mRNA level of peptide transporter 1, while reducing the contents of hydrogen peroxide and malondialdehyde and the mRNA level of glutathione-S-transferase omega 2 in the longissimus dorsi muscle. In conclusion, dietary Gln supplementation can improve the intestinal function of piglets and promote the growth of the longissimus dorsi muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...