Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(6): 2024-2034, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36942615

RESUMEN

Tunable structural color has many potential applications in artificial camouflage, mechanical sensors, etc. Despite the extensive efforts to develop efficient tunable structural color, there is still a wide gap between the existing "passive" tuning methods and the "active" strategy found on organisms such as chameleons that can change color according to the environment. Inspired by the active tunable color system of chameleons, we propose a smart skin comprising a nanoscale hole array of photonic crystals, carbon nanotube coatings, and liquid crystal elastomers, to integrate multiple functions, i.e., structural color tunability, sensing, and actuation, in one structure. The smart skin was further coupled with an image acquisition unit (which mimics eyes to obtain colors from the environment) and a controller (which mimics the brain to process the signals transmitted from the image acquisition unit to the smart skin), to construct an active tunable structural color system. The proposed system autonomously modulates the color according to the environmental color. To validate the color tuning, color scanning from red to green to blue or vice versa is demonstrated in this work, which could certainly open up new paths to create active tunable structural color systems, and thus, push the development of structural color-based devices and systems.

2.
Small ; 19(17): e2206342, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653937

RESUMEN

Artificial muscles are of significant value in robotic applications. Rigid artificial muscles possess a strong load-bearing capacity, while their deformation is small; soft artificial muscles can be shifted to a large degree; however, their load-bearing capacity is weak. Furthermore, artificial muscles are generally controlled in an open loop due to a lack of deformation-related feedback. Human arms include muscles, bones, and nerves, which ingeniously coordinate the actuation, load-bearing, and sensory systems. Inspired by this, a soft-rigid hybrid smart artificial muscle (SRH-SAM) based on liquid crystal elastomer (LCE) and helical metal wire is proposed. The thermotropic responsiveness of the LCE is adopted for large reversible deformation, and the helical metal wire is used to fulfill high bearing capacity and electric heating function requirements. During actuation, the helical metal wire's resistance changes with the LCE's electrothermal deformation, thereby achieving deformation-sensing characteristics. Based on the proposed SRH-SAM, a reconfigurable blazed grating plane and the effective switch between attachment and detachment in bionic dry adhesion are accomplished. The SRH-SAM opens a new avenue for designing smart artificial muscles and can promote the development of artificial muscle-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...