Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(5): 1467-1476, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38696739

RESUMEN

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Asunto(s)
Luz , Optogenética , Regiones Promotoras Genéticas , Shewanella , Shewanella/genética , Shewanella/metabolismo , Optogenética/métodos , Transporte de Electrón , Regiones Promotoras Genéticas/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Redes Reguladoras de Genes/genética , Biología Sintética/métodos
2.
Mol Breed ; 43(4): 25, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37313521

RESUMEN

Peanut is an essential food and oilseed crop. One of the most critical factors contributing to the low yield and destruction of peanut plant growth is leaf disease attack, which will directly reduce the yield and quality of peanut plants. The existing works have shortcomings such as strong subjectivity and insufficient generalization ability. So, we proposed a new deep learning model for peanut leaf disease identification. The proposed model is a combination of an improved X-ception, a parts-activated feature fusion module, and two attention-augmented branches. We obtained an accuracy of 99.69%, which was 9.67%-23.34% higher than those of Inception-V4, ResNet 34, and MobileNet-V3. Besides, supplementary experiments were performed to confirm the generality of the proposed model. The proposed model was applied to cucumber, apple, rice, corn, and wheat leaf disease identification, and yielded an average accuracy of 99.61%. The experimental results demonstrate that the proposed model can identify different crop leaf diseases, proving its feasibility and generalization. The proposed model has a positive significance for exploring other crop diseases' detection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01370-8.

3.
ACS Synth Biol ; 11(7): 2327-2338, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35731987

RESUMEN

Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.


Asunto(s)
Shewanella , Biopelículas , Conductividad Eléctrica , Electrodos , Transporte de Electrón , Proteómica , Shewanella/metabolismo
4.
Bioelectricity ; 3(2): 126-135, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34476388

RESUMEN

Many species of bacteria are naturally capable of types of electron transport not observed in eukaryotic cells. Some species live in environments containing heavy metals not typically encountered by cells of multicellular organisms, such as arsenic, cadmium, and mercury, leading to the evolution of enzymes to deal with these environmental toxins. Bacteria also inhabit a variety of extreme environments, and are capable of respiration even in the absence of oxygen as a terminal electron acceptor. Over the years, several of these exotic redox and electron transport pathways have been discovered and characterized in molecular-level detail, and more recently synthetic biology has begun to utilize these pathways to engineer cells capable of detecting and processing a variety of metals and semimetals. One such application is the biologically controlled synthesis of nanoparticles. This review will introduce the basic concepts of bacterial metal reduction, summarize recent work in engineering bacteria for nanoparticle production, and highlight the most cutting-edge work in the characterization and application of bacterial electron transport pathways.

5.
Int J Biol Macromol ; 163: 2023-2031, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32941898

RESUMEN

Pseudomonas mendocina NK-01 previously isolated by our lab is able to accumulate medium-chain-length polyhydroxyalkanoate (mcl-PHA) intracellularly and secrete alginate oligosaccharide (AO) to the extracellular milieu. The present study aimed at investigating whether improved production of mcl-PHA and AO by P. mendocina can be accomplished by genome reduction. In this study, 14 large genomic fragments accounting for 7.7% of the genome of P. mendocina NK-01 were sequentially deleted to generate a series of genome-reduced strains by an upp-based markerless knockout method. As a result, the intracellular ATP/ADP ratio of the strain NKU421 with the largest deletion improved by 11 times compared to NK-01. More importantly, the mcl-PHA and AO yields of NKU421 increased by 114.8% and 27.8%, respectively. Enhancing mcl-PHA and AO production by NKU421 may be attributed to improved transcriptional levels of PHA synthase genes and AO secretion-related genes. The present study suggests that rational reduction of bacterial genome is a feasible approach to construct an optimal chassis for enhanced production of bacterial metabolites. In the future, further reduction of the NKU421 genome can be expected to create high-performance chassis for the development of microbial cell factories.


Asunto(s)
Genoma Bacteriano/genética , Oligosacáridos/genética , Polihidroxialcanoatos/biosíntesis , Pseudomonas mendocina/genética , Aciltransferasas/genética , Alginatos/metabolismo , Ingeniería Metabólica , Polihidroxialcanoatos/genética
6.
World J Microbiol Biotechnol ; 36(9): 127, 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32712725

RESUMEN

Currently, synthetic biology approaches have been developed for constructing microbial cell factories capable of efficient synthesis of high value-added products. Most studies have focused on the construction of novel biosynthetic pathways and their regulatory processes. Morphology engineering has recently been proposed as a novel strategy for constructing efficient microbial cell factories, which aims at controlling cell shape and cell division pattern by manipulating the cell morphology-related genes. Morphology engineering strategies have been exploited for improving bacterial growth rate, enlarging cell volume and simplifying downstream separation. This mini-review summarizes cell morphology-related proteins and their function, current advances in manipulation tools and strategies of morphology engineering, and practical applications of morphology engineering for enhanced production of intracellular product polyhydroxyalkanoate and extracellular products. Furthermore, current limitations and the future development direction using morphology engineering are proposed.


Asunto(s)
Bacterias/citología , Ingeniería Celular/métodos , Actinas , Bacterias/genética , Proteínas Bacterianas , Vías Biosintéticas , Proteínas del Citoesqueleto , Citoesqueleto , Microbiología Industrial , Biología Sintética
7.
Int J Biol Macromol ; 154: 1596-1605, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706817

RESUMEN

In this study, six genes involved in ß-oxidation pathway of P. mendocina NK-01 were deleted to construct mutant strains NKU-∆ß1 and NKU-∆ß5. Compared with the wild strain NKU, the mcl-PHA titers of NKU-∆ß5 were respectively increased by 5.58- and 4.85-fold for culturing with sodium octanoate and sodium decanoate. And the mcl-PHA titers of NKU-∆ß1 was increased by 10.02-fold for culturing with dodecanoic acid. The contents of dominant monomers 3-hydroxydecanoate (3HD) and 3-hydroxydodecanoate (3HDD) of the mcl-PHA synthesized by NKU-∆ß5 were obviously increased to 90.01 and 58.60 mol%, respectively. Further deletion of genes phaG and phaZ, the 3HD and 3HDD contents were further improved to 94.71 and 68.67 mol%, respectively. The highest molecular weight of mcl-PHA obtained in this study was 80.79 × 104 Da, which was higher than the previously reported mcl-PHA. With the increase of dominant monomer contents, the synthesized mcl-PHA showed better thermal properties, mechanical properties and crystallization properties. Interestingly, the cell size of NKU-∆ß5 was larger than that of NKU due to the accumulation of more PHA granules. This study indicated that a systematically metabolic engineering approach for P. mendocina NK-01 could significantly improve the mcl-PHA titer, dominant monomer contents and physical properties of mcl-PHA.


Asunto(s)
Ingeniería Metabólica , Polihidroxialcanoatos/química , Polihidroxialcanoatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Eliminación de Gen , Fenómenos Mecánicos , Peso Molecular
8.
3 Biotech ; 9(9): 344, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31497462

RESUMEN

This study aimed to investigate the effects of cytoskeleton protein MreB on bacterial cell morphology and the synthesis of alginate oligosaccharides (AO) and polyhydroxyalkanoate (PHA) by Pseudomonas mendocina NK-01. To overexpress the mreB gene, an expression vector encoding MreB-GFP fusion protein was constructed. The scanning electron microscope (SEM) showed that cells expressing MreB were longer than the wild ones, which agrees with MreB's relationship with the synthesis of peptidoglycan. Cells expressing the MreB-GFP fusion protein emitted green fluorescence under a fluorescence microscope, suggesting that MreB was functionally expressed in strain NK-01. Under a confocal laser scanning microscope, MreB was observed as located around the cell membrane. Furthermore, the recombinant strain could synthesize 0.961 g/L AO, which was 5.86-fold higher than wild-type strain. Through the medium optimization test, we finally selected the addition of 20 g/L glucose as the optimal glycogen addition for AO fermentation based on a high AO yield and high substrate transformation efficiency. The results indicated that overexpression of MreB affected the cell morphology, the activity of AO polymerase, and the efficiency of AO secretion. However, the synthesis of PHA for recombinant strain was slightly reduced. The results suggested that the overexpression of this cytoskeleton protein affected the yield of specific intracellular and extracellular products.

9.
Microb Biotechnol ; 12(5): 932-945, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31219230

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a biocompatible and biodegradable polypeptide with wide-ranging applications in foods, cosmetics, medicine, agriculture and wastewater treatment. Bacillus amyloliquefaciens LL3 can produce γ-PGA from sucrose that can be obtained easily from sugarcane and sugar beet. In our previous work, it was found that low intracellular glutamate concentration was the limiting factor for γ-PGA production by LL3. In this study, the γ-PGA synthesis by strain LL3 was enhanced by chromosomally engineering its glutamate metabolism-relevant networks. First, the downstream metabolic pathways were partly blocked by deleting fadR, lysC, aspB, pckA, proAB, rocG and gudB. The resulting strain NK-A6 synthesized 4.84 g l-1 γ-PGA, with a 31.5% increase compared with strain LL3. Second, a strong promoter PC 2up was inserted into the upstream of icd gene, to generate strain NK-A7, which further led to a 33.5% improvement in the γ-PGA titre, achieving 6.46 g l-1 . The NADPH level was improved by regulating the expression of pgi and gndA. Third, metabolic evolution was carried out to generate strain NK-A9E, which showed a comparable γ-PGA titre with strain NK-A7. Finally, the srf and itu operons were deleted respectively, from the original strains NK-A7 and NK-A9E. The resulting strain NK-A11 exhibited the highest γ-PGA titre (7.53 g l-1 ), with a 2.05-fold improvement compared with LL3. The results demonstrated that the approaches described here efficiently enhanced γ-PGA production in B. amyloliquefaciens fermentation.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Ingeniería Metabólica/métodos , Ácido Poliglutámico/análogos & derivados , Bacillus amyloliquefaciens/genética , Ácido Glutámico/metabolismo , Redes y Vías Metabólicas/genética , Ácido Poliglutámico/biosíntesis , Sacarosa/metabolismo
10.
Microb Cell Fact ; 18(1): 68, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971238

RESUMEN

BACKGROUND: Iturins, which belong to antibiotic cyclic lipopeptides mainly produced by Bacillus sp., have the potential for application in biomedicine and biocontrol because of their hemolytic and antifungal properties. Bacillus amyloliquefaciens LL3, isolated previously by our lab, possesses a complete iturin A biosynthetic pathway as shown by genomic analysis. Nevertheless, iturin A could not be synthesized by strain LL3, possibly resulting from low transcription level of the itu operon. RESULTS: In this work, enhanced transcription of the iturin A biosynthetic genes was implemented by inserting a strong constitutive promoter C2up into upstream of the itu operon, leading to the production of iturin A with a titer of 37.35 mg l-1. Liquid chromatography-mass spectrometry analyses demonstrated that the strain produced four iturin A homologs with molecular ion peaks at m/z 1044, 1058, 1072 and 1086 corresponding to [C14 + 2H]2+, [C15 + 2H]2+, [C16 + 2H]2+ and [C17 + 2H]2+. The iturin A extract exhibited strong inhibitory activity against several common plant pathogens. The yield of iturin A was improved to 99.73 mg l-1 by the optimization of the fermentation conditions using a response surface methodology. Furthermore, the yield of iturin A was increased to 113.1 mg l-1 by overexpression of a pleiotropic regulator DegQ. CONCLUSIONS: To our knowledge, this is the first report on simultaneous production of four iturin A homologs (C14-C17) by a Bacillus strain. In addition, this study suggests that metabolic engineering in combination with culture conditions optimization may be a feasible method for enhanced production of bacterial secondary metabolites.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Ingeniería Metabólica , Péptidos Cíclicos/biosíntesis , Antifúngicos , Bacillus amyloliquefaciens/genética , Vías Biosintéticas , Fermentación , Genoma Bacteriano , Lipopéptidos/biosíntesis , Operón , Regiones Promotoras Genéticas , Transcripción Genética
11.
Sci Rep ; 9(1): 1798, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755729

RESUMEN

Polyhydroxyalkanoate (PHA) can be produced by microorganisms from renewable resources and is regarded as a promising bioplastic to replace petroleum-based plastics. Pseudomonas mendocina NK-01 is a medium-chain-length PHA (mcl-PHA)-producing strain and its whole-genome sequence is currently available. The yield of mcl-PHA in P. mendocina NK-01 is expected to be improved by applying a promoter engineering strategy. However, a limited number of well-characterized promoters has greatly restricted the application of promoter engineering for increasing the yield of mcl-PHA in P. mendocina NK-01. In this work, 10 endogenous promoters from P. mendocina NK-01 were identified based on RNA-seq and promoter prediction results. Subsequently, 10 putative promoters were characterized for their strength through the expression of a reporter gene gfp. As a result, five strong promoters designated as P4, P6, P9, P16 and P25 were identified based on transcriptional level and GFP fluorescence intensity measurements. To evaluate whether the screened promoters can be used to enhance transcription of PHA synthase gene (phaC), the three promoters P4, P6 and P16 were separately integrated into upstream of the phaC operon in the genome of P. mendocina NK-01, resulting in the recombinant strains NKU-4C1, NKU-6C1 and NKU-16C1. As expected, the transcriptional levels of phaC1 and phaC2 in the recombinant strains were increased as shown by real-time quantitative RT-PCR. The phaZ gene encoding PHA depolymerase was further deleted to construct the recombinant strains NKU-∆phaZ-4C1, NKU-∆phaZ-6C1 and NKU-∆phaZ-16C1. The results from shake-flask fermentation indicated that the mcl-PHA titer of recombinant strain NKU-∆phaZ-16C1 was increased from 17 to 23 wt% compared with strain NKU-∆phaZ. This work provides a feasible method to discover strong promoters in P. mendocina NK-01 and highlights the potential of the screened endogenous strong promoters for metabolic engineering of P. mendocina NK-01 to increase the yield of mcl-PHA.


Asunto(s)
Polihidroxialcanoatos/química , Polihidroxialcanoatos/metabolismo , Pseudomonas mendocina/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Appl Microbiol Biotechnol ; 103(4): 1713-1724, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30610286

RESUMEN

Polyhydroxyalkanoates (PHAs) can be produced by microorganisms from renewable resources and are regarded as promising bioplastics to replace petroleum-based plastics. A medium-chain-length PHAs (mcl-PHA)-producing strain Pseudomonas mendocina NK-01 was isolated previously by our lab and its whole-genome sequence is currently available. Morphology engineering of manipulating cell morphology-related genes has been applied for enhanced accumulation of the intracellular biopolymer short-chain-length PHAs (scl-PHA). However, it has not yet been reported to improve the yield of mcl-PHA by morphology engineering so far. In this work, several well-characterized cell morphology-related genes, including the cell fission ring (Z-ring) location genes minCD, peptidoglycan degradation gene nlpD, actin-like cytoskeleton protein gene mreB, Z-ring formation gene ftsZ, and FtsZ inhibitor gene sulA, were intensively investigated for their impacts on the cell morphology and mcl-PHA accumulation by gene knockout and overexpression in P. mendocina NKU, a upp knockout mutant of P. mendocina NK-01. For a minCD knockout mutant P. mendocina NKU-∆minCD, the average cell length was obviously increased and the mcl-PHA production was improved. However, the nlpD knockout mutant had a shorter cell length and lower mcl-PHA yield compared with P. mendocina NKU. Overexpression of mreB in P. mendocina NKU resulted in spherical cells. When ftsZ was overexpressed in P. mendocina NKU, the cell division was accelerated and the mcl-PHA titer was improved. Furthermore, mreB, ftsZ, or sulA was overexpressed in P. mendocina NKU-∆minCD. Consequently, the mcl-PHA titers were all increased compared with P. mendocina NKU-∆minCD carrying the empty vector. The multiple fission pattern was finally achieved in ftsZ-overexpressing NKU-∆minCD. In this work, improved production of mcl-PHA in P. mendocina NK-01 has been achieved by morphology engineering. This work provides an alternative strategy to enhance mcl-PHA accumulation in mcl-PHA-producing strains.


Asunto(s)
Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Pseudomonas mendocina/citología , Pseudomonas mendocina/metabolismo , Eliminación de Gen , Expresión Génica , Pseudomonas mendocina/genética
13.
Sci Rep ; 7(1): 7064, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765600

RESUMEN

An industrial waste, 1,2,3-trichloropropane (TCP), is toxic and extremely recalcitrant to biodegradation. To date, no natural TCP degraders able to mineralize TCP aerobically have been isolated. In this work, we engineered a biosafety Pseudomonas putida strain KT2440 for aerobic mineralization of TCP by implantation of a synthetic biodegradation pathway into the chromosome and further improved TCP mineralization using combinatorial engineering strategies. Initially, a synthetic pathway composed of haloalkane dehalogenase, haloalcohol dehalogenase and epoxide hydrolase was functionally assembled for the conversion of TCP into glycerol in P. putida KT2440. Then, the growth lag-phase of using glycerol as a growth precursor was eliminated by deleting the glpR gene, significantly enhancing the flux of carbon through the pathway. Subsequently, we improved the oxygen sequestering capacity of this strain through the heterologous expression of Vitreoscilla hemoglobin, which makes this strain able to mineralize TCP under oxygen-limited conditions. Lastly, we further improved intracellular energy charge (ATP/ADP ratio) and reducing power (NADPH/NADP+ ratio) by deleting flagella-related genes in the genome of P. putida KT2440. The resulting strain (named KTU-TGVF) could efficiently utilize TCP as the sole source of carbon for growth. Degradation studies in a bioreactor highlight the value of this engineered strain for TCP bioremediation.


Asunto(s)
Residuos Industriales , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Propano/análogos & derivados , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Aerobiosis , Biotransformación , Carbono/metabolismo , Metabolismo Energético , Glicerol/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Propano/metabolismo , Pseudomonas putida/crecimiento & desarrollo
14.
Microb Biotechnol ; 9(6): 792-800, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27418102

RESUMEN

Currently, chlorpyrifos (CP) and carbofuran are often applied together to control major agricultural pests in many developing countries, in most cases, they are simultaneously detected in agricultural soils. Some cost-effective techniques are required for the remediation of combined pollution caused by multiple pesticides. In this work, we aim at constructing a detectable recombinant microorganism with the capacity to simultaneously degrade CP and carbofuran. To achieve this purpose, CP/carbofuran hydrolase genes and gfp were integrated into the chromosome of a biosafety strain Pseudomonas putida KT2440 using a chromosomal scarless modification strategy with upp as a counter-selectable marker. The toxicity of the hydrolysis products was significantly lower compared with the parent compounds. The recombinant strain could utilize CP or carbofuran as the sole source of carbon for growth. The inoculation of the recombinant strain to soils treated with carbofuran and CP resulted in a higher degradation rate than in noninoculated soils. Introduced green fluorescent protein can be employed as a biomarker to track the recombinant strain during bioremediation. Therefore, the recombinant strain has potential to be applied for in situ bioremediation of soil co-contaminated with carbofuran and CP.


Asunto(s)
Carbofurano/metabolismo , Cloropirifos/metabolismo , Insecticidas/metabolismo , Ingeniería Metabólica , Pseudomonas putida/metabolismo , Biotransformación , Carbono/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo , Coloración y Etiquetado/métodos
15.
Biotechnol Lett ; 38(2): 313-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26476529

RESUMEN

OBJECTIVES: To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. RESULTS: Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. CONCLUSION: The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.


Asunto(s)
Glucosa/metabolismo , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/biosíntesis , Pseudomonas mendocina/genética , Pseudomonas mendocina/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética
16.
J Microbiol Methods ; 113: 27-33, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25828098

RESUMEN

A markerless gene replacement method was adapted by combining a suicide plasmid, pEX18Tc, with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the medium-chain length polyhydroxyalkanoates (PHA(MCL))-producing strain Pseudomonas mendocina NK-01. An NK-01 5-fluorouracil (5-FU) resistant background strain was first constructed by deleting the chromosomal upp gene. The suicide plasmid pEX18Tc, carrying a functional allele of the upp gene of P. mendocina NK-01, was used to construct the vectors to delete the algA (encoding mannose-1-phosphate guanylyltransferase) and phaZ (encoding PHA(MCL) depolymerase) genes, and a 30 kb chromosomal fragment in the 5-FU resistant background host. The genes were removed efficiently from the genome of P. mendocina NK-01 and left a markerless chromosomal mutant. In addition, two exogenous genes were inserted into the phaC1 (PHA(MCL) polymerase) loci of Pseudomonas putida KT-∆UPP simultaneously. Thus, we constructed a genetically stable and marker-free P. putida KT2440 mutant with integrated mpd (encoding methyl parathion hydrolase (MPH)) and pytH (encoding a pyrethroid-hydrolyzing carboxylesterase (PytH)) gene on the chromosome. The upp-based counterselection system could be further adapted for P. mendocina NK-01 and P. putida KT2440 and used for genome reduction and metabolic pathway engineering.


Asunto(s)
Genoma Bacteriano , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Pseudomonas mendocina/genética , Pseudomonas putida/genética , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Deleción Cromosómica , Fluorouracilo/metabolismo , Vectores Genéticos , Mutación , Pentosiltransferasa/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plásmidos , Pseudomonas mendocina/metabolismo , Pseudomonas putida/metabolismo , Piretrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...