Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1302680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090671

RESUMEN

Ever since the resolution revolution in 2013, cryo-electron microscopy (cryo-EM) has become a powerful methodology in structural biology that is especially suited to study the structure of large flexible molecular complexes. Since then, the need of setting up state-of-the-art cryo-EM facilities around the world has increased tremendously. Access to high-end cryo-EM instrumentation is however expensive and requires expertise. The establishment of large cryo-EM centers worldwide, many of which provide academic users free access for both data collection and user training, has been possible with the support of government agencies across the globe. In addition, many universities, and private institutions like the Van Andel Institute (VAI) have made significant investments to establish their own cryo-EM core facilities, ensuring on-site access to their researchers. This paper aims to serve as a blueprint for establishing a new mid-sized cryo-EM facility, as it provides key information based on our experience at VAI and discusses strategies used to optimize routine operation towards high performance and efficiency for single-particle cryo-EM. Information regarding initial planning, selection of equipment as well as the development of IT solutions that were required to improve data collection and analysis are included. In addition, we present an account of the most common issues affecting operation as well as the needs for maintenance over a 6-year period, which can help interested parties to estimate the long-term costs of running this type of facility. Lastly, a brief discussion on the pros and cons of establishing the facility is also included.

3.
Nat Commun ; 12(1): 5207, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471127

RESUMEN

Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Escherichia coli Uropatógena/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Escherichia coli Uropatógena/genética
4.
Biochim Biophys Acta Biomembr ; 1863(12): 183757, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478732

RESUMEN

GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1-4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).


Asunto(s)
Proteínas Portadoras/genética , Transportador de Glucosa de Tipo 1/genética , Lípidos/genética , Fosfatidilinositol 4,5-Difosfato/química , Transporte Biológico/genética , Proteínas Portadoras/química , Clatrina/química , Endocitosis/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/química , Humanos , Lípidos/química , Fosfatidilinositol 4,5-Difosfato/genética , Transducción de Señal
5.
Arch Biochem Biophys ; 700: 108773, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33485846

RESUMEN

Fatty acids are essential cellular building blocks and a major energy source. Regardless of their metabolic fate, fatty acids first need to be activated by forming a thioester with a coenzyme A group. This reaction is carried out by acyl-CoA synthetases (ACSs), of which ACSL1 (long-chain acyl-CoA synthetase 1) is an important member. Two bacterial homologues of ACSL1 crystal structures have been solved previously. One is a soluble dimeric protein, and the other is a monomeric peripheral membrane protein. The mammalian ACSL1 is a membrane protein with an N-terminal transmembrane helix. To characterize the mammalian ACSL1, we purified the full-length mouse ACSL1 and reconstituted it into lipid nanodiscs. Using enzymatic assays, mutational analysis, and cryo-electron microscopy, we show that mouse ACSL1 is active as a monomer.


Asunto(s)
Coenzima A Ligasas/química , Animales , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Cristalografía por Rayos X , Ratones , Multimerización de Proteína , Estructura Secundaria de Proteína
6.
Nat Commun ; 11(1): 5953, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230146

RESUMEN

Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Azufre/metabolismo , Catálisis , Dominio Catalítico , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Origen de la Vida , Oxidación-Reducción , Bombas de Protones/química , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimología , Intercambiadores de Sodio-Hidrógeno/química
7.
Nature ; 586(7827): 151-155, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32968275

RESUMEN

CpG methylation by de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes, yet cannot methylate the DNA wrapped around the nucleosome core2, and they favour the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-electron microscopy structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3 and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds to the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.


Asunto(s)
Microscopía por Crioelectrón , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Nucleosomas/metabolismo , Animales , Biocatálisis , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleosomas/química , Unión Proteica , Dominios Proteicos , Xenopus/genética , ADN Metiltransferasa 3B
8.
Nat Struct Mol Biol ; 27(9): 855-862, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747784

RESUMEN

The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.


Asunto(s)
Proteínas de la Cápside/metabolismo , Ciclofilina A/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , VIH-1/química , VIH-1/ultraestructura , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
9.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32004460

RESUMEN

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Receptor Cannabinoide CB2/química , Transducción de Señal , Animales , Sitios de Unión , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/síntesis química , Antagonistas de Receptores de Cannabinoides/farmacología , Cricetinae , Cricetulus , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Células Sf9 , Spodoptera
10.
Nat Commun ; 11(1): 885, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060286

RESUMEN

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response. The mechanism underlying promiscuous ligand recognition and activation of FPRs is not clear. Here we report a cryo-EM structure of FPR2-Gi signaling complex with a peptide agonist. The structure reveals a widely open extracellular region with an amphiphilic environment for ligand binding. Together with computational docking and simulation, the structure suggests a molecular basis for the recognition of formylpeptides and a potential mechanism of receptor activation, and reveals conserved and divergent features in Gi coupling. Our results provide a basis for understanding the molecular mechanism of the functional promiscuity of FPRs.


Asunto(s)
Receptores de Formil Péptido/química , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/química , Receptores de Lipoxina/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Ratas , Receptores de Formil Péptido/genética , Receptores de Lipoxina/genética , Transducción de Señal
11.
Commun Biol ; 3(1): 24, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925330

RESUMEN

To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism.


Asunto(s)
Tomografía con Microscopio Electrónico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Conformación Molecular , Simulación de Dinámica Molecular , Proteínas Adaptadoras Transductoras de Señales , Quimiotaxis , Escherichia coli
12.
Elife ; 82019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31589141

RESUMEN

The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG-Ctf43-1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.


Asunto(s)
ADN Polimerasa I/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Unión Proteica , Multimerización de Proteína
13.
Nat Commun ; 10(1): 4142, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515475

RESUMEN

The heterodimeric eukaryotic Drs2p-Cdc50p complex is a lipid flippase that maintains cell membrane asymmetry. The enzyme complex exists in an autoinhibited form in the absence of an activator and is specifically activated by phosphatidylinositol-4-phosphate (PI4P), although the underlying mechanisms have been unclear. Here we report the cryo-EM structures of intact Drs2p-Cdc50p isolated from S. cerevisiae in apo form and in the PI4P-activated form at 2.8 Å and 3.3 Å resolution, respectively. The structures reveal that the Drs2p C-terminus lines a long groove in the cytosolic regulatory region to inhibit the flippase activity. PIP4 binding in a cytosol-proximal membrane region triggers a 90° rotation of a cytosolic helix switch that is located just upstream of the inhibitory C-terminal peptide. The rotation of the helix switch dislodges the C-terminus from the regulatory region, activating the flippase.


Asunto(s)
ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Lípidos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfato/metabolismo , Sitios de Unión , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , ATPasas Transportadoras de Calcio/ultraestructura , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato
14.
J Am Chem Soc ; 141(30): 11739-11744, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31329438

RESUMEN

Photon-to-matter chirality transfer offers both simplicity and universality to chiral synthesis, but its efficiency is typically low for organic compounds. Besides the fundamental importance of this process relevant for understanding the origin of homochirality on Earth, new pathways for imposing chiral bias during chemical process are essential for a variety of technologies from medicine to informatics. The strong optical activity of inorganic nanoparticles (NPs) affords photosynthetic routes to chiral superstructures using circularly polarized photons. Although plasmonic NPs are promising candidates for such synthetic routes due to the strong rotatory power of highly delocalized plasmonic states (Ma et al. Chem. Rev. 2017, 117 (12), 8041), realization of light-driven synthesis of chiral nanostructures has been more challenging for plasmonic NPs than for the semiconductor due to the short lifetime of the plasmonic states. Here we show that illumination of gold salt solutions with circularly polarized light induces the formation of NPs and their subsequent assembly into chiral nanostructures 10-15 nm in diameter. Despite their seemingly irregular shape, the resulting nanocolloids showed circular dichroism (CD) spectra with opposite polarity after exposure to photons with left and right circular polarization. The sign and spectral position of the CD peaks of illuminated dispersions matched those calculated for nanostructures with complex geometry identified from electron tomography images. Quantification of the complex shapes of NP assemblies using chirality measures revealed a direct correlation with the experimental spectra. The light-driven assembly of chiral nanostructures originates from the asymmetric displacement of NPs in dynamic assemblies by plasmonic fields followed by particle-to-particle attachment. The ability of gold NPs to "lock" the chirality of the incident photons in assembled nanostructures can be used to create a variety of chiral nanomaterials with plasmonic resonances.

15.
Nature ; 562(7727): 444-447, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283140

RESUMEN

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/ultraestructura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(41): E9560-E9569, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257943

RESUMEN

The protein disaggregase ClpB hexamer is conserved across evolution and has two AAA+-type nucleotide-binding domains, NBD1 and NBD2, in each protomer. In M. tuberculosis (Mtb), ClpB facilitates asymmetric distribution of protein aggregates during cell division to help the pathogen survive and persist within the host, but a mechanistic understanding has been lacking. Here we report cryo-EM structures at 3.8- to 3.9-Šresolution of Mtb ClpB bound to a model substrate, casein, in the presence of the weakly hydrolyzable ATP mimic adenosine 5'-[γ-thio]triphosphate. Mtb ClpB existed in solution in two closed-ring conformations, conformers 1 and 2. In both conformers, the 12 pore-loops on the 12 NTDs of the six protomers (P1-P6) were arranged similarly to a staircase around the bound peptide. Conformer 1 is a low-affinity state in which three of the 12 pore-loops (the protomer P1 NBD1 and NBD2 loops and the protomer P2 NBD1 loop) are not engaged with peptide. Conformer 2 is a high-affinity state because only one pore-loop (the protomer P2 NBD1 loop) is not engaged with the peptide. The resolution of the two conformations, along with their bound substrate peptides and nucleotides, enabled us to propose a nucleotide-driven peptide translocation mechanism of a bacterial ClpB that is largely consistent with several recent unfoldase structures, in particular with the eukaryotic Hsp104. However, whereas Hsp104's two NBDs move in opposing directions during one step of peptide translocation, in Mtb ClpB the two NBDs move only in the direction of translocation.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Endopeptidasa Clp/química , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Hidrólisis , Dominios Proteicos , Transporte de Proteínas
17.
Nature ; 561(7724): E44, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29930353

RESUMEN

In the PDF version of this Article, owing to a typesetting error, an incorrect figure was used for Extended Data Fig. 5; the correct figure was used in the HTML version. This has been corrected online.

18.
Nature ; 558(7711): 553-558, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899450

RESUMEN

G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the ß2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Rodopsina/metabolismo , Rodopsina/ultraestructura , Arrestina/química , Arrestina/metabolismo , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química , Transducción de Señal , Especificidad por Sustrato
19.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754813

RESUMEN

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Asunto(s)
Proteínas Arqueales/metabolismo , Hidrogenasas/metabolismo , Pyrococcus furiosus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Evolución Molecular , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Mutagénesis , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Sodio/química , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
20.
J Biol Chem ; 293(13): 4713-4723, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414791

RESUMEN

In all domains of life, proteasomes are gated, chambered proteases that require opening by activators to facilitate protein degradation. Twelve proteasome accessory factor E (PafE) monomers assemble into a single dodecameric ring that promotes proteolysis required for the full virulence of the human bacterial pathogen Mycobacterium tuberculosis Whereas the best characterized proteasome activators use ATP to deliver proteins into a proteasome, PafE does not require ATP. Here, to unravel the mechanism of PafE-mediated protein targeting and proteasome activation, we studied the interactions of PafE with native substrates, including a newly identified proteasome substrate, the ParA-like protein, Rv3213c, and with proteasome core particles. We characterized the function of a highly conserved feature in bacterial proteasome activator proteins: a glycine-glutamine-tyrosine-leucine (GQYL) motif at their C termini that is essential for stimulating proteolysis. Using cryo-electron microscopy (cryo-EM), we found that the GQYL motif of PafE interacts with specific residues in the α subunits of the proteasome core particle to trigger gate opening and degradation. Finally, we also found that PafE rings have 40-Å openings lined with hydrophobic residues that form a chamber for capturing substrates before they are degraded, suggesting PafE has a previously unrecognized chaperone activity. In summary, we have identified the interactions between PafE and the proteasome core particle that cause conformational changes leading to the opening of the proteasome gate and have uncovered a mechanism of PafE-mediated substrate degradation. Collectively, our results provide detailed insights into the mechanism of ATP-independent proteasome degradation in bacteria.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Chaperonas Moleculares/química , Mycobacterium tuberculosis/química , Complejo de la Endopetidasa Proteasomal/química , Proteolisis , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA