Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401635, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607950

RESUMEN

Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.

2.
ACS Nano ; 18(15): 10485-10494, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564695

RESUMEN

Producing high-quality two-dimensional (2D) covalent organic frameworks (COFs) is crucial for industrial applications. However, this remains significantly challenging with current synthetic techniques. A deep understanding of the intermolecular interactions, reaction temperature, and oligomers is essential to facilitate the growth of highly crystalline COF films. Herein, molecular dynamics simulations were employed to explore the growth of 2D COFs from monomer assemblies on graphene. Our results showed that chain growth reactions dominated the COF surface growth and that van der Waals (vdW) interactions were important in enhancing the crystallinity through monomer preorganization. Moreover, appropriately tuning the reaction temperature improved the COF crystallinity and minimized the effects of amorphous oligomers. Additionally, the strength of the interface between the COF and the graphene substrate indicated that the adhesion force was proportional to the crystallinity of the COF. This work reveals the mechanisms for nucleation and growth of COFs on surfaces and provides theoretical guidance for fabricating high-quality 2D polymer-based crystalline nanomaterials.

3.
ACS Appl Mater Interfaces ; 16(8): 10475-10484, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363711

RESUMEN

Helical carbon nanotube (HCNT) is regarded as one of the most promising nanomaterials due to its excellent tensile strength and superhigh stretchability. Here, a novel HCNT-woven film (HWF) is proposed, and its in-plane and out-of-plane mechanical properties are systematically investigated via molecular dynamics (MD) simulation. The MD results show that HWF possesses highly stretchable capability resulting from sliding and straightening of CNT segments, and the maximum tensile strain can reach 2113%. Furthermore, the HWF presents an obvious tensile mechanical anisotropy. The torsion failure is the main fracture mode when the HWF is stretched along the longitudinal direction. However, when the HWF is stretched along the transverse direction, the fracture is mainly caused by intertube compression. On the other hand, the HWF can dissipate large amount of kinetic energy of projectile via sliding and fracture of HCNTs, leading to high specific penetration energy. This work provides a theoretical guidance for designing and fabricating next-generation superstrong two-dimensional CNT-based nanomaterials.

4.
Heliyon ; 9(11): e21471, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37942149

RESUMEN

Microgrids have emerged as a possible alternative to overcome the difficulties of the combined cooling, heating, and power (CCHP) system in power networks. Energy storage devices are vital for the stable and effective functioning of Microgrids. In this paper, a new modified metaheuristic technique, called the Amended Multiverse Optimizer algorithm (AMVOA) is used to suggest a new method of Microgrid design with energy storage. The Multiverse theory notion served as the inspiration for the metaheuristic optimization method known as the AMVOA. The suggested strategy takes into account the load demand, energy storage technologies, and architecture of a Microgrid with renewable energy sources. The goal is to keep the Microgrid's overall cost as low as possible while preserving its dependability and sustainability. To validate the efficiency of the proposed method, two HRES scenarios are put out, the first of which relies on PV, wind, diesel, and battery power, and the second of which uses PV, diesel, and battery power. To validate the superiority of the proposed method, the method has been compared with five state-of-the-art algorithms, including the Evolutionary Algorithm (EA), Modified Grasshopper Optimization Algorithm (MGOA), Improved Gray Wolf Optimization Algorithm (IGWOA), Improved Arithmetic Optimization Algorithm (IAOA), and the original MVOA. The study compares two scenarios: one with wind, PV, diesel, and battery power and the other with only PV, diesel, and battery power. In scenario 1 (Wind/PV/DG/BESS), the AMVOA algorithm achieves optimal results, resulting in a Net Present Cost (NPC) of $299,010 and an energy cost of $0.2309 per kilowatt-hour. The proposed technique successfully integrates 84.86 % renewable energy sources while meeting defined limitations. The optimal sizing for scenario 2 (PV/DG/BESS) is $333,800 with an energy cost of $0.3451 per kilowatt-hour. The AMVOA algorithm outperforms other algorithms in convergence and provides efficient power management. However, further analysis and evaluation are necessary to assess the robustness, practicality, and reliability of the proposed Microgrid configurations. The outcomes show how the suggested AMVO-based strategy may be used to create the best Microgrid architecture with energy storage. The recommended method may be applied as a decision-making tool for Microgrid planning and design, especially for the integration of renewable energy.

5.
Nano Lett ; 23(19): 9065-9072, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772787

RESUMEN

Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are promising nanomaterials due to their remarkable mechanical and electrical properties. However, the out-of-plane mechanical properties of MXene under impact loading remain unclear. Here, particular impact-resistant fracture behaviors and energy dissipation mechanisms of MXene were systemically investigated via molecular dynamics (MD) simulation. Specifically, it was found that the specific penetration energy of MXene exceeds most conventional impact-resistant materials, such as aluminum and polycarbonate. Two kinds of novel energy dissipation mechanisms, including radial fracture and crushed fracture under different impact velocities, are revealed. In addition, the sandwiched atomic-layer structure of MXene can deflect cracks and restrain their propagation to some extent, enabling the cracked MXene to retain remarkable resistance. This work provides in-depth insights into the impact-resistance of MXene, laying a foundation for its future applications.

6.
Nano Lett ; 23(4): 1416-1423, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36652343

RESUMEN

Exploring and designing two-dimensional (2D) nanomaterials for armor-piercing protection has become a research focus. Here, by molecular dynamics simulation, we revealed that the ultralight monolayer covalent organic framework (COF), one kind of novel 2D crystalline polymer, possesses superior impact-resistant capability under high-velocity impact. The calculated specific penetration energy is much higher than that of other traditional impact-resistant materials, such as steel, poly(methyl methacrylate), Kevlar, etc. It was found that the hexagonal nanopores integrated by polymer chains have large deformation compatibility resulting from flexible torsion and stretching, which can remarkably contribute to the energy dissipation. In addition, the deformable nanopores can effectively restrain the crack propagation, enable COF to resist multiple impacts. This work uncovers the extreme dynamic responses of COF under high-velocity impact and provides theoretical guidance for designing superstrong 2D polymer-based crystalline nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...