Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(13): 9627-9635, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38489156

RESUMEN

High-temperature-resistant integrated circuits with excellent flexibility, a high integration level (nanoscale transistors), and low power consumption are highly desired in many fields, including aerospace. Compared with conventional SiC high-temperature transistors, transistors based on two-dimensional (2D) MoS2 have advantages of superb flexibility, atomic scale, and ultralow power consumption. However, MoS2 cannot survive at high temperature and drastically degrades above 200 °C. Here, we report MoS2 field-effect transistors (FETs) with top/bottom hexagonal boron nitride (h-BN) encapsulation and graphene electrodes. With the protection of the h-BN/h-BN structure, the devices can survive at much higher temperature (≥500 °C in air) than those of the MoS2 devices ever reported, which provides us an opportunity to explore the electrical properties and working mechanism of MoS2 devices at high temperature. Unlike the relatively low-temperature situation, the on/off ratio and subthreshold swing of MoS2 FETs show drastic variation at elevated temperature due to the injection of thermal emission carriers. Compared with metal electrode, devices with a graphene electrode demonstrate superior performance at high temperature (∼1-order-larger current on/off ratio, 3-7 times smaller subthreshold swing, and 5-9 times smaller threshold voltage shift). We further realize that the flexible CMOS NOT gate based on the above technique, and demonstrate logic computing at 550 °C. This work may stimulate the fundamental research of properties of 2D materials at high temperature, and also creates conditions for next-generation flexible harsh-environment-resistant integrated circuits.

2.
Open Life Sci ; 18(1): 20220687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954103

RESUMEN

Genomics and bioinformatics methods were used to screen genes and molecular markers correlated with colorectal cancer incidence and progression, and their biological functions were analyzed. Differentially expressed genes were obtained using the GEO2R program following colorectal cancer chip data GSE44076 retrieval from the Gene Expression Omnibus gene expression comprehensive database. An online database (David) that combines annotation, visualization, and gene discovery was utilized for investigating genes. Pathway and protein analyses were performed via resources from the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Visual analysis of the KEGG pathway was carried out according to ClueGO and CluePedia to establish the PPI network of gene interaction between pathways; the genes with the highest connectivity were screened by the molecular complex detection analysis method as Hub genes in this study; gene expression was verified by GEPIA online analysis tool, and Kaplan-Meier survival curve was drawn for prognosis analysis. By analyzing GSE44076 microarray data, 86 genes were selected, and colorectal cancer tissues' upregulation was observed in 27 genes and downregulation in 59 ones. GO assessment revealed that the differentially expressed genes were basically correlated with retinol dehydrogenase activity, carbon dehydrogenase activity, collagen-containing extracellular matrix, anchored component of memory, and cellular hormone metabolic process. Moreover, the KEGG assessment revealed that the differential genes contained various signal pathways such as retinol metabolism, chemical carotenogenesis, and nitrogen metabolism. Through further analysis of the PPI protein network, 4 clusters were obtained, and 16 Hub genes were screened out by combining the degree of each gene. Through the analysis of each gene on the prognosis of colon cancer through the GEPIA online analysis website, it was found that the expression levels of AQP8, CXCL8, and ZG16 genes were remarkably associated with colon cancer prognosis (P < 0.05). Genomics and bioinformatics methods can effectively analyze the genes and molecular markers correlated with colorectal cancer incidence and progression, help to systematically clarify the molecular mechanism of 16 key genes in colorectal cancer development and progression, and provide a theoretically valid insight for the screening of diagnostic markers of colorectal cancer and the selection of accurate targets for drug therapy.

3.
Ecotoxicol Environ Saf ; 263: 115361, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597289

RESUMEN

Cadmium (Cd) removal from soil to reduce Cd accumulation in plants is essential for agroecology, food safety, and human health. Cd enters plants from soil and affects plant growth and development. Hydrogels can easily combine with Cd, thereby altering its bioavailability in soil. However, few studies have evaluated the effects of hydrogel on the complex phytotoxicity caused by Cd uptake in plants and the microbial community structure. Herein, a new poly (acrylic acid)-grafted starch and potassium humate composite (S/K/AA) hydrogel was added to soil to evaluate its impact on tobacco growth and the soil microenvironment. The results indicate that the addition of S/K/AA hydrogel can significantly improve the biomass, chlorophyll (Chl) content, and photosynthetic capacity of tobacco plants during Cd stress conditions, and decrease Cd concentration, probably by affecting Cd absorption through the expression of Cd absorption transporters (e.g., NRAMP5, NRAMP3, and IRT1). Moreover, the application of S/K/AA hydrogel not only reduced the accumulation of reactive oxygen species (ROS), but also reduced the antioxidant activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), suggesting that S/K/AA hydrogel alleviates Cd toxicity via a non-antioxidant pathway. Notably, we further analyzed the effectiveness of the hydrogel on microbial communities in Cd-contaminated soil and found that it increased the Cd-tolerant microbial community (Arthrobacter, Massilia, Streptomyces), enhancing the remediation ability of Cd-contaminated soil and helping tobacco plants to alleviate Cd toxicity. Overall, our study provides primary insights into how S/K/AA hydrogel affects Cd bioavailability and alleviates Cd toxicity in plants.


Asunto(s)
Arthrobacter , Cadmio , Humanos , Cadmio/toxicidad , Disponibilidad Biológica , Nicotiana , Hidrogeles
4.
ACS Appl Mater Interfaces ; 15(19): 23583-23592, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37020349

RESUMEN

Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.


Asunto(s)
Técnicas Biosensibles , Elementos de Transición , Técnicas Biosensibles/métodos
5.
ACS Appl Mater Interfaces ; 15(4): 5317-5325, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669128

RESUMEN

Vapor phase infiltration (VPI) derived from atomic layer deposition (ALD) enables inorganic materials to nucleate and grow within the free volume of polymers, which has shown promising prospects in the field of composite solid polymer electrolytes (CSPEs). However, there are only a few types of metal oxides that can be incorporated into the polymer matrix by VPI, let alone binary metal oxides, due to the limited knowledge of the VPI synthesis process. To combine the merits of different metal oxides, we investigate the VPI method to prepare ZnO-Al2O3 composites in poly(ethylene oxide) (PEO). When the introducing order is Al2O3/ZnO (AZO), due to the extremely high reactivity of trimethyl aluminum (TMA) with PEO, VPI-Al2O3 will accumulate near the surface of PEO. The surface Al2O3 layer inhibits the further diffusion of the diethyl zinc (DEZ) into the PEO matrix, leading to weak polymer-filler interactions and limited improvement of the Li+ conduction. In the incorporation order of ZnO/Al2O3 (ZAO), the moderate reactivity of DEZ renders the uniform distribution of VPI-ZnO within PEO, and the following TMA can both react with PEO and VPI-ZnO particles near the surface of PEO, which not only preserves the interactions between VPI-ZnO and PEO but also better inhibits the growth of lithium dendrites. The incorporation order plays a crucial role in the morphology and composition of binary metal oxides synthesized by VPI.

6.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 460-474, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35196229

RESUMEN

Compared with short-term tracking, long-term tracking remains a challenging task that usually requires the tracking algorithm to track targets within a local region and re-detect targets over the entire image. However, few works have been done and their performances have also been limited. In this paper, we present a novel robust and real-time long-term tracking framework based on the proposed local search module and re-detection module. The local search module consists of an effective bounding box regressor to generate a series of candidate proposals and a target verifier to infer the optimal candidate with its confidence score. For local search, we design a long short-term updated scheme to improve the target verifier. The verification capability of the tracker can be improved by using several templates updated at different times. Based on the verification scores, our tracker determines whether the tracked object is present or absent and then chooses the tracking strategies of local or global search, respectively, in the next frame. For global re-detection, we develop a novel re-detection module that can estimate the target position and target size for a given base tracker. We conduct a series of experiments to demonstrate that this module can be flexibly integrated into many other tracking algorithms for long-term tracking and that it can improve long-term tracking performance effectively. Numerous experiments and discussions are conducted on several popular tracking datasets, including VOT, OxUvA, TLP, and LaSOT. The experimental results demonstrate that the proposed tracker achieves satisfactory performance with a real-time speed. Code is available at https://github.com/difhnp/ELGLT.

7.
Nanoscale ; 14(27): 9655-9660, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35792823

RESUMEN

The acquisition of monodisperse metal nanoparticles covered by conductive metal-organic frameworks (cMOFs) is an archetype of an electron-unobstructed core-shell composite, valued for its potential electrocatalytic ability and selectivity enhancement. In this work, Pt@cMOF composites with direct interfaces showed better performance in the oxygen reduction reaction than composites with indirect interfaces or with lower electroconductivity shells. This composite was proved to exhibit the ability to expedite electron transfer with different thicknesses of electrode materials. The detailed mechanism was studied by exploring the conductivity of shell materials, interfaces between cores and shells, and the surface electronic structure of the nanoparticles. We also report reaction selectivity from the inherent porous shells in the selective reduction of cinnamyl alcohol.

8.
Inorg Chem ; 61(18): 6829-6836, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35473298

RESUMEN

Metal-organic frameworks (MOFs), a new type of porous material, have shown many possible applications in gas storage and separation, biomedicine, catalysis, and so on. While most MOFs are synthesized through solvothermal synthesis where a large quantity of organic solvent is used, the green synthetic approach using a minimized amount of solvent is important to prevent irreversible environmental compacts. In this study, we successfully synthesized Zr-MOFs with SBUs (e.g., UiO-66 and MIL-140A) using a simple metal source and investigated the role of organic modulators in modulating the MOF structures during solid-state synthesis. Meanwhile, UiO-66 rich in defects synthesized via a solid-state conversion strategy shows good catalytic performance for the ring-opening of epoxides with alcohols. This work contributes to the understanding of the role of organic modulators in the solid-state synthesis of MOFs.

9.
ACS Appl Mater Interfaces ; 14(12): 14466-14473, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312273

RESUMEN

Bottom-up synthesis based on site-selective atomic layer deposition is a powerful atomic-scale processing approach to fabricate materials with desired functionalities. Typical selective atomic layer deposition (ALD) can be achieved using selective activation of a growth area or selective deactivation of a protected area. In this work, we explored the site selectivity based on the difference of the inherent surface reactivity between different materials and within the same materials. By sequentially applying two site-selective atomic layer deposition, the ALD Pd catalyst is spatially confined on ALD SnO2 modified h-BN substrate Pd/SnO2/h-BN shows improved catalytic activity and stability due to strong metal-support interactions and spatial confinement. The results reveal that sequential site-selective ALD is a feasible and effective synthesis strategy that provides an attractive path toward designing and developing highly stable catalysts.

10.
Nano Lett ; 22(5): 2030-2037, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35156832

RESUMEN

Thin films with effective ion sieving ability are highly desired in energy storage and conversion devices, including batteries and fuel cells. However, it remains challenging to design and fabricate cost-effective and easy-to-process ultrathin films for this purpose. Here, we report a 300 nm-thick functional layer based on porous organic cages (POCs), a new class of porous molecular materials, for fast and selective ion transport. This solution processable material allows for the design of thin films with controllable thickness and tunable porosity by tailoring cage chemistry for selective ion separation. In the prototype, the functional layer assembled by CC3 can selectively sieve Li+ ions and efficiently suppress undesired polysulfides with minimal sacrifice for the system's total energy density. Separators modified with POC thin films enable batteries with good cycle performance and rate capability and offer an attractive path toward the development of future high-energy-density energy storage devices.

11.
Nano Lett ; 21(19): 8370-8377, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34543029

RESUMEN

Lithium-rich layered oxides have received great attention due to their high energy density as cathode material. However, the progressive structural transformation from layered to spinel phase triggered by transition-metal migration and the irreversible release of lattice oxygen leads to voltage fade and capacity decay. Here, we report a Fe, Cl codoped and Co-free Li-rich layered cathode with significantly improved structural stability. It is revealed that the Fe and Cl codoping can facilitate the Li-ion diffusion and improve the rate performance of the materials. Moreover, the calculations show that the structural stability is enhanced by Fe and Cl codoping. As a result, the Fe and Cl codopant reduces the irreversible release of lattice oxygen, mitigates voltage fade, and improves the first-cycle Coulombic efficiency. This work provides a low-cost, environmentally friendly, practical strategy for high-performance cathode materials.

12.
Chem Commun (Camb) ; 57(29): 3587-3590, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33710227

RESUMEN

We propose a novel strategy to introduce platinum into the metal nodes of ZIF-8 by preloading Pt as a dopant in ZnO (Pt-ZnO) and then convert it to Pt doped ZIF-8 (Pt-ZIF-8) through a chemical vapor deposition (CVD) approach. The solvent-free conversion of Pt-ZnO to Pt-ZIF-8 allows the Pt dopant in ZnO to coordinate with organic linkers directly without the formation of Pt nanoparticles, which is a general issue of many methods. This general synthesis strategy may facilitate the discovery of MMOFs that have not been reported previously.

13.
ACS Appl Mater Interfaces ; 13(11): 13281-13288, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710859

RESUMEN

Lithium-rich layered oxide cathodes with high specific energy have become one of the most popular cathode materials for high-performance lithium-ion batteries. However, spinel phase formation due to the migration of transition metals and the release of lattice oxygen leads to the degradation of electrochemical performance. Here, we develop a synthesis approach for Li-rich layered oxide cathodes by a two-step heat-treatment process, which includes precursor calcination and pellet sintering. Compared with the sample prepared by the traditional one-step calcination, the oxide particles prepared by the two-step heat treatment show increased grain size from 217 to 425 nm. The Li-rich layered oxide cathodes with larger crystal grains indicate a mitigated formation of spinel phase and reduced voltage decay, which result in improved specific capacity, cycle stability, and rate capability. In addition, the thermal stability of the oxides is also improved. The improved electrochemical performance is because of the large single grains having a reduced contact area with a liquid electrolyte and the stable crystal lattice during cycling. Our strategy not only provides a simple and effective way to enhance the stability of the Li-rich layered oxide cathodes but also extends to the preparation of oxide powders with large grains.

14.
Nano Lett ; 20(12): 8832-8840, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33237783

RESUMEN

Balancing interfacial stability and Li+ transfer kinetics through surface engineering is a key challenge in developing high-performance battery materials. Although conformal coating enabled by atomic layer deposition (ALD) has shown great promise in controlling impedance increase upon cycling by minimizing side reactions at the electrode-electrolyte interface, the coating layer itself usually exhibits poor Li+ conductivity and impedes surface charge transfer. In this work, we have shown that by carefully controlling postannealing temperature of an ultrathin ZrO2 film prepared by ALD, Zr4+ surface doping could be achieved for Ni-rich layered oxides to accelerate the charge transfer yet provide sufficient protection. Using single-crystal LiNi0.6Mn0.2Co0.2O2 as a model material, we have shown that surface Zr4+ doping combined with ZrO2 coating can enhance both the cycle performance and rate capability during high-voltage operation. Surface doping via controllable postannealing of ALD surface coating layer reveals an attractive path toward developing stable and Li+-conductive interfaces for single-crystal battery materials.

15.
Small ; 16(20): e2001257, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32323456

RESUMEN

The large-scale implementation of lithium metal batteries (LMBs) has long been plagued by the uncontrollable Li deposition triggered safety issues. Herein, a lithiophilic three-dimensional Li anode scaffold, which is prepared by molten Li infusion aided by confined growth of low-cost Zn clusters, is rationally constructed for high-performance LMBs. Owing to the synergy of the carbon host and the effective regulation from the Zn nanoclusters, the large volumetric change of Li metal is well mitigated and shows a smooth and dendrite-free behavior. The Li anode scaffold can deliver much improved Coulombic efficiency, superior rate performance, and long cycle lifespan with much lower voltage polarization. Furthermore, the half cells of Li anode scaffold paired with LiFePO4 /LiCoO2 /sulfur can achieve a higher specific capacity and longer stable cycling life than those with conventional Li foil. The Li|LFP cells can achieve a stable cycling over 250 cycles at 1C with a higher capacity retention of ≈90.8%, and a higher initial discharge capacity of 924.6 mAh g-1 with a high capacity retention over 300 cycles can also be obtained in Li|S cells at 1C. This work demonstrates a cost-effective and scalable strategy for stable Li metal anode toward next-generation and high-performance LMBs.

16.
Natl Sci Rev ; 7(2): 342-354, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692050

RESUMEN

The manufacture of 3D mesostructures is receiving rapidly increasing attention, because of the fundamental significance and practical applications across wide-ranging areas. The recently developed approach of buckling-guided assembly allows deterministic formation of complex 3D mesostructures in a broad set of functional materials, with feature sizes spanning nanoscale to centimeter-scale. Previous studies mostly exploited mechanically controlled assembly platforms using elastomer substrates, which limits the capabilities to achieve on-demand local assembly, and to reshape assembled mesostructures into distinct 3D configurations. This work introduces a set of design concepts and assembly strategies to utilize dielectric elastomer actuators as powerful platforms for the electro-mechanically controlled 3D assembly. Capabilities of sequential, local loading with desired strain distributions allow access to precisely tailored 3D mesostructures that can be reshaped into distinct geometries, as demonstrated by experimental and theoretical studies of ∼30 examples. A reconfigurable inductive-capacitive radio-frequency circuit consisting of morphable 3D capacitors serves as an application example.

17.
Nanotechnology ; 30(36): 364001, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31121568

RESUMEN

Monolithic capacitors operating at radio frequencies (RF) serve as critical components in integrated circuits for wireless communication. Design and fabrication innovations for high capacitance density RF capacitors are highly desired for the miniaturization of RFIC chips. However, practical and simple solutions are limited by existing capabilities in three-dimensional (3D) structure construction and the effective configuration of electrodes. We report a unique route to achieve unprecedentedly high capacitance density at a high operating frequency through a capacitor configuration of 3D coil interdigital electrodes using planar semiconductor processing compatible materials and fabrication methods. A systematic mechanical-electrical design principle is demonstrated, and fabricated devices show a maximum 21.5 pF capacitance, which is 17.2× larger after rolling up. The corresponding capacitance density is as large as 371 pF mm-2, with resonant frequency of 1.5 GHz. The performance could be improved significantly by simply rolling up more turns with minimal change to the area footprint.

18.
Int J Clin Exp Pathol ; 8(10): 12084-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26722393

RESUMEN

CD133 is one of the most commonly used markers of pancreatic cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. Although the expression of CD133 has been reported to correlate with poor prognosis of PDAC in most literatures, some controversies still exist. In this study, we aimed to investigate the correlation between CD133 expression and prognosis and clinicopathological features in PDAC. A search in the Medline, EMBASE and Chinese CNKI (China National Knowledge Infrastructure) database (up to 1 March 2015) was performed using the following keywords pancreatic cancer, CD133, AC133, prominin-1 etc. Data from eligible studies were extracted and included into meta-analysis using a random effects model. Outcomes included overall survival and various clinicopathological features. We performed a final analysis of 723 patients from 11 evaluable studies for prognostic value and 687 patients from 12 evaluable studies for clinicopathological features. Our study shows that the pooled hazard ratio (HR) of overexpression CD133 for overall survival in PDAC was 0.58 (95% confidence interval (CI): 0.49-0.67) by univariate analysis and 0.73 (95% CI: 0.52-1.03) by multivariate analysis. With respect to clinicopathological features, CD133 overexpression by immunohistochemistry (IHC) method was closely correlated with clinical TNM stage (TNM stage III+IV, OR=0.32, 95% CI: 0.19-0.54), tumor differentiation (poor differentiation, OR=0.56, 95% CI: 0.37-0.83), and lymph node metastasis (N1, 3.15, 95% CI: 1.56-6.36) in patients with PDAC. Our meta-analysis results suggest that CD133 is an efficient prognostic factor in PDAC. Overexpression of CD133 was significantly associated with clinical TNM stage, tumor differentiation and lymph node metastasis.


Asunto(s)
Antígenos CD/biosíntesis , Biomarcadores de Tumor/análisis , Carcinoma Ductal Pancreático/patología , Glicoproteínas/biosíntesis , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Antígeno AC133 , Antígenos CD/análisis , Carcinoma Ductal Pancreático/mortalidad , Glicoproteínas/análisis , Humanos , Neoplasias Pancreáticas/mortalidad , Péptidos/análisis , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...