Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuron ; 108(2): 382-393.e5, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32841590

RESUMEN

Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Optogenética/métodos , Olfato/fisiología , Animales , Femenino , Holografía , Masculino , Ratones Endogámicos C57BL , Odorantes , Imagen Óptica , Umbral Sensorial/fisiología
2.
Sci Adv ; 5(5): eaaw4466, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31149638

RESUMEN

The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO2) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO2 and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO2 changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia.


Asunto(s)
Encéfalo/irrigación sanguínea , Membrana Eritrocítica/fisiología , Hiperemia/sangre , Oxígeno/sangre , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Hiperemia/fisiopatología , Dispositivos Laboratorio en un Chip , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA