Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323894

RESUMEN

Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.

2.
Front Bioeng Biotechnol ; 11: 1205911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576985

RESUMEN

Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.

3.
ACS Nano ; 17(9): 8499-8510, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074122

RESUMEN

Heterogenous Pd catalysts play a pivotal role in the chemical industry; however, it is plagued by S2- or other strong adsorbates inducing surface poisoning long term. Herein, we report the development of AuFe3@Pd/γ-Fe2O3 nanosheets (NSs) as an in situ regenerable and highly active hydrogenation catalyst. Upon poisoning, the Pd monolayer sites could be fully and oxidatively regenerated under ambient conditions, which is initiated by •OH radicals from surface defect/FeTetra vacancy-rich γ-Fe2O3 NSs via the Fenton-like pathway. Both experimental and theoretical analyses demonstrate that for the electronic and geometric effect, the 2-3 nm AuFe3 intermetallic nanocluster core promotes the adsorption of reactant onto Pd sites; in addition, it lowers Pd's affinity for •OH radicals to enhance their stability during oxidative regeneration. When packed into a quartz sand fixed-bed catalyst column, the AuFe3@Pd/γ-Fe2O3 NSs are highly active in hydrogenating the carbon-halogen bond, which comprises a crucial step for the removal of micropollutants in drinking water and recovery of resources from heavily polluted wastewater, and withstand ten rounds of regeneration. By maximizing the use of ultrathin metal oxide NSs and intermetallic nanocluster and monolayer Pd, the current study demonstrates a comprehensive strategy for developing sustainable Pd catalysts for liquid catalysis.

4.
Environ Sci Technol ; 2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36617724

RESUMEN

Electrochemical reduction (ER) is a promising approach to safely remove pollutants. However, sluggish reaction kinetics and significant side reactions considerably limit the applicability of this green process. Herein, we uncovered the previously ignored role of interfacial hydrophilicity in determining the ER performance through electron microscopy observations, contact angle (CA) analysis, and electrochemical measurements. A Pd/C electrocatalyst forms dense nanopores on the electrode surface, rendering it highly hydrophobic and achieving a CA of up to 145°. This imposes a large mass-transfer barrier for the diffusion of water and pollutants into Pd sites. Moreover, the release of H2 is suppressed, which changes the solid-liquid (Pd-polluted water) interface into a solid-gas (H2)-liquid interface. This further slows down mass transfer and the decontamination process. This dilemma can be easily alleviated by adding hydrophilic polymers like polyethylene glycol to increase hydrophilicity and improve mass transfer. By this way, the activity and Faraday efficiency of Pd/C in the electrochemical hydrodehalogenation of 2,4-dichlorophenol could be increased by 4-5 times. Moreover, this interfacial microenvironment modulation strategy is parallel to other approaches, such as Pd structural engineering, and therefore these strategies can be combined to further increase the electrochemical decontamination performance of electrocatalysts.

5.
Exp Gerontol ; 169: 111962, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162532

RESUMEN

Video game-based therapies are widely used in rehabilitation. Compared with conventional bilateral upper limb training (CBULT), the effects of video game-based bilateral upper limb training (VGBULT) on brain cortical activation and functional connectivity, still not fully clear. We have developed a VGBULT system, and measured the brain activity of 20 elderly subjects (10 male, mean age = 62.4 ± 5.8) while performing CBULT and VGBULT tasks by using functional near infrared spectroscopy (fNIRS). The results showed that the cerebral cortex of the two groups both showed significant activation (p < 0.05), compared with the baseline; In the VGBLUT group, the activation of motor cortex (MC) and prefrontal cortex (PFC) was stronger, and the functional connectivity between PFC and MC was also enhanced. This study showed that VGBULT is potentially more beneficial for the elderly neural activities and cognitive control, and provides a theoretical basis for future research and development of such rehabilitation products. Moreover, fNIRS is a reliable tool for tracking brain activation in the evaluation of retraining regimens.


Asunto(s)
Corteza Motora , Juegos de Video , Masculino , Humanos , Anciano , Espectroscopía Infrarroja Corta/métodos , Encéfalo , Extremidad Superior
6.
J Phys Chem Lett ; 13(31): 7296-7305, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35916783

RESUMEN

Understanding the reactive site/CO2/electrolyte interfacial behaviors is very crucial for the design of an advantageous CO2 electrocatalytic reduction (CO2ER) system. One important but unrevealed question is how the CO2ER process is influenced by the high concentration of HCO3-, which is deliberately added as electrolyte or from the inevitable reaction between dissolved CO2 and OH-. Here, we provide unambiguous in situ spectroscopic evidence that on Ag-based catalysts, HCO3- is apt to facilitate *OCO- generation and therefore rebalances CO2ER pathways. By employing an alternative acid electrolyte to restrict the exchange between CO2 and HCO3- and eliminating the effect of solution pH, we reveal that HCO3- can decrease the onset potential of *OCO- and promote further formate production. Theoretical calculations indicate HCO3- can stabilize the adsorption of *OCO- instead of *COOH. The renewed understanding of the role of HCO3- could facilitate the judicious selection of electrolytes to regulate the CO2ER pathway and product distribution.

7.
Chem Commun (Camb) ; 58(74): 10357-10360, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36004767

RESUMEN

Au@RhPd ultrathin nanowires are designed as a highly reactive and selective catalyst for the hydrogenation of phenol under ambient conditions. Au NWs modulate the electronic state of Rh atoms to enhance the adsorption of phenol and desorption of cyclohexanone. Pd works as a cocatalyst to activate H2 to H* and spillover to Rh sites. This new catalyst shows a turnover frequency of up to 560 h-1 for a wide spectrum of phenols with >80% selectivity toward cyclohexanones.


Asunto(s)
Fenol , Fenoles , Adsorción , Catálisis , Hidrogenación
8.
Anal Chem ; 93(50): 16735-16740, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874160

RESUMEN

Sulfur mustard (SM) is a notorious blistering chemical warfare agent. Rapid field screening for trace SM is of vital significance for the detection of antiterrorism and timely treatment. Here, a visual assay for SM was constructed on the basis of its inhibition for the G-quadruplexes/hemin DNAzyme. Specifically, multiple guanine (G)-rich single stranded oligonucleotides (ssODN) named S1 (80% of G in the total bases), i.e., the precursor for G-quadruplex, which could oxide tetramethylbenzidine (TMB) to its green product, were conjugated on the nonfouling polymer brush grafted magnetic beads (MB@P(C-H)). SM could specifically alkylate the N7 and O6 sites of G in the S1; thus, it failed to form the DNAzyme based signal reporter. It was demonstrated that the nonfouling P(C-H) interface on the magnetic bead (MB) could protect the conjugated ssODN from nuclease degradation, thus ensuring its well sensing performance in complex samples. Under the optimized conditions, this method achieved good sensitivity and selectivity with a limit of detection (LOD) as low as 0.26 µmol L-1, and the recoveries ranging from 86% to 117% were obtained for different SM spiked real samples. Above all, this method combining low cost and ready operation could be suited for rapid field SM screening in a wide range of environmental matrices.


Asunto(s)
ADN Catalítico , G-Cuádruplex , Gas Mostaza , Hemina , Gas Mostaza/toxicidad , Investigación
9.
ACS Sens ; 6(6): 2129-2135, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34080834

RESUMEN

Rapid screening monofluoroacetic acid (FAcOH) is responsible for preventing chemical poisoning and food safety events. Whereas surface enhanced Raman scattering (SERS) spectra is an effective tool for detecting forbidden chemicals, it is difficult to directly detect FAcOH due to its small Raman scattering cross section as well as weak adsorption on SERS substrates. In this work, the metal phenolic supramolecular networks (MPNs, i.e., the tannic acid and Fe3+ complex) were fabricated on the commercial nanoanodic aluminum oxide film (NAAO) for assisting in situ chemical deposition highly uniform Ag nanostructure over large areas (the NAAO@AgNS). The low cost and simple fabrication process made the NAAO@AgNS a single-use consumable. For FAcOH detection, a specific derivative reaction between FAcOH and thiosalicylic acid (TSA) was introduced. By taking TSA as the Raman probe, its SERS signal attenuated constantly with the increasing amount of FAcOH. For improving quantitative accuracy, thiocyanate (SCN-) was introduced on the NAAO@AgNS as an internal standard; thus, the characteristic peak intensity ratios associated with TSA and SCN- (I1035/I2125) were fitted to the concentration of FAcOH. It was demonstrated that the SERS assay achieved good sensitivity and selection toward FAcOH with the limit of quantitation (LOD) as low as 50 nmol L-1. The NAAO@AgNS featured with highly sensitive, uniform, and consistent SERS performances could easily extend to wide SERS applications.


Asunto(s)
Nanoestructuras , Plata , Óxido de Aluminio , Fluoroacetatos
10.
ACS Nano ; 14(9): 11363-11372, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32790343

RESUMEN

The electrocatalytic reduction of CO2 (CO2ER) to liquid fuels is important for solving fossil fuel depletion. However, insufficient insight into the reaction mechanisms renders a lack of effective regulation of liquid product selectivity. Here, in situ surface-enhanced Raman spectroscopy (SERS) empowered by 13C/12C isotope exchange is applied to probing the CO2ER process on nanoporous silver (np-Ag). Direct spectroscopic evidence of the preliminary intermediates, *COOH and *OCO-, indicates that CO2 is coordinated to the catalyst via diverse adsorption modes. Further, the relative Raman intensities of the above intermediates vary notably on np-Ag modified by Cu or Pd, and the liquid product selectivity also changes accordingly. Combined with density functional theory calculations, this study demonstrates that the CO2 adsorption configuration is a critical factor governing the reaction selectivity. Meanwhile, *COOH and *OCO- are key targets in the initial stage regulating liquid product selectivity, which could facilitate future selective catalyst design.

11.
Environ Sci Technol ; 52(17): 9992-10002, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30067342

RESUMEN

Adsorbed atomic H (H*ads) facilitates indirect pathways playing a major role in the electrochemical removal of various priority pollutants. It is crucial to identify the atomic sites responsible for the provision of H*ads. Herein, through a systematic study of the distribution of H*ads on Pd nanocatalysts with different sizes and, more importantly, deliberately controlled relative abundance of surface defects, we uncovered the central role of defects in the provision of H*ads. Specifically, the H*ads generated on Pd in an electrochemical process increased markedly upon introducing defect sites by changing the morphology to ultrathin polycrystalline Pd nanowires (NWs), while dramatically reducing upon decreasing the number of surface defects through an annealing treatment. Benefiting from a proportion of H*ads up to 40% of the total H* species, the Pd NWs showed an electrochemical active surface area normalized rate constant of 13.8 ± 0.8 h-1 m-2, which is 8-9 times higher than its Pd/C counterparts. The pivotal role of defect sites for the generation of H*ads was further verified by blocking such sites with Rh and Pt atoms, while theoretical calculation also confirms that the adsorption energy of H*ads on these sites is much higher than that on the Pd{111} facet.


Asunto(s)
Contaminantes Ambientales , Nanocables , Adsorción , Publicidad , Catálisis
12.
Environ Sci Technol ; 52(7): 4244-4255, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29547286

RESUMEN

AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon-halogen bonds (C-X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd-Pd, d-orbital occupation state, and the Au-Pd interface of the Pd reactive centers and studied the structure-activity relationship of Au-Pd in the catalyzed cleavage of C-X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C-Cl, C-Br, and C-I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C-Br/C-I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.


Asunto(s)
Carbono , Oro , Catálisis , Halógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...