Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 112: 154707, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805483

RESUMEN

BACKGROUND: Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE: This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS: Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS: The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-ß expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION: It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Bleomicina/toxicidad , COVID-19/patología , Pulmón/patología , Estrés Oxidativo
2.
Biomolecules ; 12(10)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36291619

RESUMEN

Cancer constitutes a severe threat to human health and quality of life and is one of the most significant causes of morbidity and mortality worldwide. Natural dietary products have drawn substantial attention in cancer treatment and prevention due to their availability and absence of toxicity. Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors. This review summarizes recent publications on culture techniques, extraction processes, and anti-tumor applications of RA-enriched dietary supplements. We discuss techniques to improve RA bioavailability and provide a mechanistic discussion of RA regarding tumor prevention, treatment, and adjuvant therapy. RA exhibits anticancer activity by regulating oxidative stress, chronic inflammation, cell cycle, apoptosis, and metastasis. These data suggest that daily use of RA-enriched dietary supplements can contribute to tumor prevention and treatment. RA has the potential for application in anti-tumor drug development.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Calidad de Vida , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Suplementos Dietéticos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácido Rosmarínico
3.
Biomed Res Int ; 2022: 8752325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178456

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and poor prognosis. The prognostic signatures related to conventional therapy response remain limited. The Wenfei Buqi Tongluo (WBT) formula, a traditional Chinese medicine (TCM) formula, has been widely utilized to treat respiratory diseases in China, which is particularly effective in promoting inflammatory absorption. In this study, we aim to explore the mechanism of the WBT formula in the inhibition of inflammatory response during IPF, based on network pharmacology and in vivo experiments. METHODS: Network pharmacology was applied to predict the changes of biological processes and potential pathways for the WBT formula against IPF. Histopathological changes, inflammatory factors (IL-6, IL-1ß, and TNF-α), and the proteins of the TLR4/MyD88/NF-κB pathway in bleomycin- (BLM-) induced mice model were examined by hematoxylin-eosin (H&E), Masson or immunohistochemistry staining, Western blot, and enzyme-linked immunosorbent assay analysis. RESULTS: A total of 163 possible components and 167 potential targets between the WBT formula and IPF were obtained. The enrichments of network pharmacology showed that inflammation response, TNF, and NF-κB pathways were involved in the treatment of WBT against IPF. The in vivo experiments indicated that the WBT formula could ameliorate inflammatory exudation and collagen deposition at a histopathology level in the BLM-induced mice model. The levels of IL-6, IL-1ß, and TNF-α were reduced after the WBT formula treatment. Moreover, the expressions of phosphorylated-NF-κB p65, TLR4, and MyD88 were significantly downregulated by the WBT formula, compared with the BLM-induced group. CONCLUSION: These results indicated that the WBT formula can suppress BLM-induced IPF in a mouse model by inhibiting the inflammation via the TLR4/MyD88/NF-κB pathway. This study provides a new insight into the molecular mechanisms of the WBT formula in the application at the clinic.


Asunto(s)
Fibrosis Pulmonar Idiopática , FN-kappa B , Animales , Medicamentos Herbarios Chinos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Front Genet ; 13: 1102422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685949

RESUMEN

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive pulmonary fibrotic disease with unknown etiology and poor outcomes. It severely affects the quality of life. In this study, we comprehensively analyzed the expression of N6-methyladenosine (m6A) RNA methylation regulators using gene expression data from various tissue sources in IPF patients and healthy volunteers. Methods: The gene expression matrix and clinical characteristics of IPF patients were retrieved from the Gene Expression Omnibus database. A random forest model was used to construct diagnosis signature m6A regulators. Regression analysis and correlation analysis were used to identify prognosis m6A regulators. Consensus cluster analysis was used to construct different m6A prognosis risk groups, then functional enrichment, immune infiltration and drug sensitivity analysis were performed. Result: Five candidate m6A genes from lung tissue were used to predict the incidence, and the incidence was validated using datasets from bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells. Subsequently, the BALF dataset containing outcomes data was used for the prognosis analysis of m6A regulators. METTL14, G3BP2, and ZC3H13 were independent protective factors. Using correlation analysis with lung function in the lung tissue-derived dataset, METTL14 was a protective factor in IPF. Based on METTL14 and G3BP2, a consensus cluster analysis was applied to distinguish the prognostic m6A regulation patterns. The low-risk group's prognosis was significantly better than the high-risk group. Biological processes regulated by various risk groups included fibrogenesis and cell adhesion. Analysis of immune cell infiltration showed upregulation of neutrophils in the m6A high-risk group. Subsequently, five m6A high-risk group sensitive drugs and one m6A low-risk group sensitive drug were identified. Discussion: These findings suggest that m6A regulators are involved in the diagnosis and prognosis of IPF, and m6A patterns are a method to identify IPF outcomes.

5.
Front Pharmacol ; 12: 770197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925028

RESUMEN

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-ß signaling pathway. Finally, TGF-ß1-induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-ß1-induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-ß/Smad3 pathway.

6.
Front Pharmacol ; 12: 762998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126110

RESUMEN

Pulmonary fibrosis (PF) is the end stage of various chronic and progressive interstitial lung diseases. TGF-ß, a profibrotic cytokine, can promote epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and fibroblast proliferation, which contribute to progressive lung remodeling in PF. The Wenfei Buqi Tongluo (WBT) formula has been certified to be effective in the prevention and treatment of PF in clinical practice and has inhibitory effects on EMT, inflammation, and profibrotic factors. However, the pharmacological mechanisms of WBT against PF need to be further explored. In this study, we first analyzed the chemical components of the WBT formula using the UHPLC/Q-TOF-MS analysis. The potential targets of the identified compounds from WBT were predicted by the network pharmacology, which was confirmed by in vivo and in vitro study. After screening by the PubChem database, we first identified the 36 compounds of WBT and predicted the TGF-ß signaling pathway, with ECM degradation as potential mechanism of WBT against PF by the network pharmacology. Furthermore, WBT treatment inhibited the levels of TGF-ß and Smad3 phosphorylation and subsequently alleviated EMT and ECM accumulation in the bleomycin-induced mouse model and TGF-ß1-induced cell model. These findings indicate that WBT can block the progressive process of PF by inhibiting EMT and promoting ECM degradation via the TGF-ß/Smad3 pathway. This study may provide new insights into the molecular mechanism of WBT for the prevention and treatment of PF in the clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA