Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1323553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439921

RESUMEN

Background: Peanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods. Methods: DEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods. Results: The obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation < 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals. Conclusion: This novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods.

2.
J Agric Food Chem ; 71(38): 14068-14078, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37679308

RESUMEN

Bovine ß-lactoglobulin (BLG) is a common allergen found in milk, and the immunoglobulin E (IgE) epitope plays a crucial role in cow milk allergy. Therefore, targeting the IgE epitope could be useful in accurately detecting BLG and assessing its allergenicity. However, producing an IgE epitope-specific antibody (IgE-EsAb) through traditional methods requires complex and time-consuming procedures. Here, IgE-EsAb was purified from rabbit anti-BLG sera by immunomagnetic beads in one step. Then, a sandwich ELISA (sELISA) based on the IgE-EsAb was developed to detect BLG and predict the potential milk allergenicity in foods. The obtained IgE-EsAb could specifically recognize the target IgE epitope of BLG and exhibited high affinity and specificity. The developed IgE-EsAb-based sELISA demonstrated an ultra-wide linear range of 3.9-1.28 × 105 ng/mL, with a limit of detection of 0.49 ng/mL for BLG. Additionally, the proposed immunoassay showed high specificity and recoveries (91.24-109.61%). The ability of the IgE-EsAb-based sELISA to evaluate the potential milk allergenicity in foods was validated using sera from cow milk allergy patients. These results suggest that immunomagnetic beads are an effective tool for rapidly obtaining the IgE-EsAb, and our proposed sELISA could be a reliable and user-friendly method for monitoring trace amounts of BLG and predicting the potential milk allergenicity of food samples.


Asunto(s)
Alérgenos , Hipersensibilidad a la Leche , Femenino , Humanos , Bovinos , Animales , Conejos , Epítopos , Lactoglobulinas/análisis , Inmunoglobulina E
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA