Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 10: 113, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852408

RESUMEN

Different cupric oxide (CuO) structures have attracted intensive interest because of their promising applications in various fields. In this study, three kinds of CuO structures, namely, CuO microdisks, CuO nanoblocks, and CuO microspheres, are synthesized by solution-based synthetic methods. The morphologies and crystal structures of these CuO structures are characterized by field-emission scanning electron microscope and X-ray diffractometer, respectively. They are used as thermal conductive fillers to prepare silicone-based thermal greases, giving rise to great enhancement in thermal conductivity. Compared with pure silicone base, the thermal conductivities of thermal greases with CuO microdisks, CuO nanoblocks, and CuO microspheres are 0.283, 0256, and 0.239 W/mK, respectively, at filler loading of 9 vol.%, which increases 139%, 116%, and 99%, respectively. These thermal greases present a slight descendent tendency in thermal conductivity at elevated temperatures. These experimental data are compared with Nan's model prediction, indicating that the shape factor has a great influence on thermal conductivity improvement of thermal greases with different CuO structures. Meanwhile, due to large aspect ratio of CuO microdisks, they can form thermal networks more effectively than the other two structures, resulting in higher thermal conductivity enhancement.

2.
Artículo en Inglés | MEDLINE | ID: mdl-25386216

RESUMEN

Glycyrrhizae Radix modulates the neurochemical and locomotor alterations induced by acute psychostimulants in rodents via GABAb receptors. This study investigated the influence of methanol extract from Glycyrrhizae Radix (MEGR) on repeated methamphetamine- (METH-) induced locomotor sensitization and conditioned place preference (CPP). A cohort of rats was treated with METH (1 mg/kg/day) for 6 consecutive days, subjected to 6 days of withdrawal, and then challenged with the same dose of METH to induce locomotor sensitization; during the withdrawal period, the rats were administered MEGR (60 or 180 mg/kg/day). A separate cohort of rats was treated with either METH or saline every other day for 6 days in METH-paired or saline-paired chambers, respectively, to induce CPP. These rats were also administered MEGR (180 mg/kg) prior to every METH or CPP expression test. Pretreatment with MEGR (60 and 180 mg/kg/day) attenuated the expression of METH-induced locomotor sensitization dose-dependently, and 180 mg/kg MEGR significantly inhibited the development and expression of METH-induced CPP. Furthermore, administration of a selective GABAb receptor antagonist (SCH50911) prior to MEGR treatment effectively blocked the inhibitory effects of MEGR on locomotor sensitization, but not CPP. These results suggest that Glycyrrhizae Radix blocked repeated METH-induced behavioral changes via GABAb receptors.

3.
Neural Regen Res ; 9(21): 1923-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25558244

RESUMEN

The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secreting inflammatory cytokines, and is an important target in the treatment of nerve inflammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein expression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...