Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(19): 7841-7864, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38774154

RESUMEN

Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.

2.
Chem Mater ; 35(3): 1373-1386, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36999121

RESUMEN

The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.

3.
IUCrJ ; 10(Pt 1): 131-142, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598508

RESUMEN

The true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings. The molecular structure of the third molecule was previously considered provisional. These compounds were isolated as by-products in the synthesis of similar products and were at the same time nanocrystalline and available only in very limited amounts. 3D electron diffraction data, taken from submicrometric single crystals, allowed for direct ab initio structure solution and the unbiased determination of the internal molecular conformation. Detailed synthetic routes and spectroscopic analyses are also discussed. Based on many-body perturbation theory simulations, benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene may be a promising candidate for triplet-triplet annihilation and 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene may be a promising candidate for intermolecular singlet fission in the solid state.


Asunto(s)
Electrones , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...