Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 6103, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030231

RESUMEN

While many countries employed digital contact tracing to contain the spread of SARS-CoV-2, the contribution of cospace-time interaction (i.e., individuals who shared the same space and time) to transmission and to super-spreading in the real world has seldom been systematically studied due to the lack of systematic sampling and testing of contacts. To address this issue, we utilized data from 2230 cases and 220,878 contacts with detailed epidemiological information during the Omicron outbreak in Beijing in 2022. We observed that contact number per day of tracing for individuals in dwelling, workplace, cospace-time interactions, and community settings could be described by gamma distribution with distinct parameters. Our findings revealed that 38% of traced transmissions occurred through cospace-time interactions whilst control measures were in place. However, using a mathematical model to incorporate contacts in different locations, we found that without control measures, cospace-time interactions contributed to only 11% (95%CI: 10%-12%) of transmissions and the super-spreading risk for this setting was 4% (95%CI: 3%-5%), both the lowest among all settings studied. These results suggest that public health measures should be optimized to achieve a balance between the benefits of digital contact tracing for cospace-time interactions and the challenges posed by contact tracing within the same setting.


Asunto(s)
COVID-19 , Trazado de Contacto , SARS-CoV-2 , Trazado de Contacto/métodos , Humanos , COVID-19/transmisión , COVID-19/epidemiología , SARS-CoV-2/aislamiento & purificación , China/epidemiología , Brotes de Enfermedades , Modelos Teóricos
3.
Materials (Basel) ; 17(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38591432

RESUMEN

Using limestone powder (LP), the by-product of manufactured sand, to replace part of fly ash (FA) or manufactured sand could not only turn waste into treasure and decrease the price of concrete, but could also enhance the performance of concrete and reduce environmental pollution. However, the impact of various LP incorporation methods on the performance of mass concrete was inconsistent. In this paper, the effects of LP on the workability, compressive strength, constrained expansion rate, hydration temperature and impermeability of mass concrete were studied by replacing FA or manufactured sand alone and replacing FA and manufactured sand simultaneously. The results showed that the impact of LP on the performance of mass concrete was equal when it replaced FA alone and FA and manufactured sand at the same time. When the replacement amount was 20%, the workability, expansibility and early strength of concrete were improved, but the later strength and impermeability were slightly reduced. The workability, compressive strength, expansibility and impermeability of mass concrete were improved when manufactured sand was replaced alone, and the optimal dosage was 10%. The LP, moreover, reduced the hydration temperature peak of concrete in three kinds of mixing methods, but the temperature peak appeared earlier. At lower dosages, LP optimized pore structure and promoted the early hydration of cement through filler effects and nucleation effects. When LP replaced manufactured sand, the microstructure of concrete was more dense, so the replacement of manufactured sand had a better effect on the improvement of concrete properties. A reference value for the use of LP in mass concrete is provided in this study.

4.
Acta Pharmacol Sin ; 45(8): 1715-1726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38684798

RESUMEN

Colorectal cancer (CRC) is a prevalent form of gastrointestinal malignancy with challenges in chemotherapy resistance and side effects. Effective and low toxic drugs for CRC treatment are urgently needed. Ferroptosis is a novel mode of cell death, which has garnered attention for its therapeutic potential against cancer. Baicalein (5, 6, 7-trihydroxyflavone) is the primary flavone extracted from the dried roots of Scutellaria baicalensis that exhibits anticancer effects against several malignancies including CRC. In this study, we investigated whether baicalein induced ferroptosis in CRC cells. We showed that baicalein (1-64 µM) dose-dependently inhibited the viability of human CRC lines HCT116 and DLD1. Co-treatment with the ferroptosis inhibitor liproxstatin-1 (1 µM) significantly mitigated baicalein-induced CRC cell death, whereas autophagy inhibitor chloroquine (25 µM), necroptosis inhibitor necrostatin-1 (10 µM), or pan-caspase inhibitor Z-VAD-FMK (10 µM) did not rescue baicalein-induced CRC cell death. RNA-seq analysis confirmed that the inhibitory effect of baicalein on CRC cells is associated with ferroptosis induction. We revealed that baicalein (7.5-30 µM) dose-dependently decreased the expression levels of GPX4, key regulator of ferroptosis, in HCT116 and DLD1 cells by blocking janus kinase 2 (JAK2)/STAT3 signaling pathway via direct interaction with JAK2, ultimately leading to ferroptosis in CRC cells. In a CRC xenograft mouse model, administration of baicalein (10, 20 mg/kg, i.g., every two days for two weeks) dose-dependently inhibited the tumor growth with significant ferroptosis induced by inhibiting the JAK2/STAT3/GPX4 axis in tumor tissue. This study demonstrates that ferroptosis contributes to baicalein-induced anti-CRC activity through blockade of the JAK2/STAT3/GPX4 signaling pathway, which provides evidence for the therapeutic application of baicalein against CRC.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Flavanonas , Janus Quinasa 2 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Factor de Transcripción STAT3 , Flavanonas/farmacología , Flavanonas/uso terapéutico , Humanos , Ferroptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Ratones Desnudos , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Células HCT116 , Ensayos Antitumor por Modelo de Xenoinjerto , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
5.
Cell Commun Signal ; 22(1): 112, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347507

RESUMEN

BACKGROUND: Though (1S, 3R)-RSL3 has been used widely in basic research as a small molecular inducer of ferroptosis, the toxicity on normal cells and poor pharmacokinetic properties of RSL3 limited its clinical application. Here, we investigated the synergism of non-thermal plasma (NTP) and low-concentration RSL3 and attempted to rise the sensitivity of NSCLC cells on RSL3. METHODS: CCK-8 assay was employed to detect the change of cell viability. Microscopy and flowcytometry were applied to identify lipid peroxidation, cell death and reactive oxygen species (ROS) level respectively. The molecular mechanism was inspected with western blot and RT-qPCR. A xenograft mice model was adopted to investigate the effect of NTP and RSL3. RESULTS: We found the synergism of NTP and low-concentration RSL3 triggered severe mitochondria damage, more cell death and rapid ferroptosis occurrence in vitro and in vivo. NTP and RSL3 synergistically induced xCT lysosomal degradation through ROS/AMPK/mTOR signaling. Furthermore, we revealed mitochondrial ROS was the main executor for ferroptosis induced by the combined treatment. CONCLUSION: Our research shows NTP treatment promoted the toxic effect of RSL3 by inducing more ferroptosis rapidly and provided possibility of RSL3 clinical application.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP , Lisosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR , Carbolinas/efectos adversos , Carbolinas/toxicidad
6.
Cell Death Discov ; 10(1): 42, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263152

RESUMEN

The gas therapy is drawing increasing attention in the treatment of many diseases including cancer. As one of gas signaling molecules, carbon monoxide (CO) has been proved to exert anti-cancer effects via triggering multiple cell death types, such as autophagy, apoptosis and necrosis. Here, we showed that low concentration CO delivered from CO-releasing molecule 3 (CORM-3) effectively induced ferroptosis, known as a novel proinflammatory programmed cell death, in vitro and in vivo. Mechanistically, we found that CO triggered ferroptosis by modulating the ROS/GSK3ß/GPX4 signaling pathway, resulting in the accumulation of lipid hydroperoxides and the occurrence of ferroptosis. We think our findings provide novel insights into the anti-cancer mechanisms of CO, and suggest that CO could potentially be exploited as a novel ferroptosis inducer for cancer treatment in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA