Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.206
Filtrar
1.
Anticancer Drugs ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728095

RESUMEN

Chemotherapy failure and resistance are the leading causes of mortality in patients with acute myeloid leukemia (AML). However, the role of m6A demethylase FTO and its inhibitor rhein in AML and AML drug resistance is unclear. Therefore, this study aimed to investigate the antileukemic effect of rhein on AML and explore its potential mechanisms underlying drug resistance. Bone marrow fluid was collected to assess FTO expression in AML. The Cell Counting Kit 8 reagent was used to assess cell viability. Migration assays were conducted to assess the cell migration capacity. Flow cytometry was used to determine the apoptotic effects of rhein and western blot analysis was used to detect protein expression. Online SynergyFinder software was used to calculate the drug synergy scores. The in-vivo antileukemic effect of rhein was assessed in an AML xenograft mouse model. We analyzed different types of AML bone marrow specimens to confirm that FTO is overexpressed in AML, particularly in cases of multidrug resistance. Subsequently, we conducted in-vivo and in-vitro investigations to explore the pharmacological activity and mechanism of rhein in AML and AML with multidrug resistance. The findings demonstrated that rhein effectively suppressed the proliferation and migration of AML cells in a time- and dose-dependent manner and induced apoptosis. Rhein targets FTO, inhibits the AKT/mTOR pathway, and exhibits synergistic antitumor effects when combined with azacitidine. This study elucidates the significant role of FTO and its inhibitor rhein in AML and AML with multidrug resistance, providing new insights for overcoming multidrug resistance in AML.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38733444

RESUMEN

Volatile organic compounds (VOCs) frequently pose a threat to the biosphere, impacting ecosystems, flora, fauna, and the surrounding environment. Industrial emissions of VOCs often include the presence of water vapor, which, in turn, diminishes the adsorption capacity and efficacy of adsorbents. This occurs due to the competitive adsorption of water vapor, which competes with target pollutants for adsorption sites on the adsorbent material. In this study, hydrophobic activated carbons (BMIMPF6-AC (L), BMIMPF6-AC (g), and BMIMPF6-AC-H) were successfully prepared using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to adsorb toluene under humidity environment. The adsorption performance and mechanism of the resulting ionic liquid-modified activated carbon for toluene in a high-humidity environment were evaluated to explore the potential application of ionic liquids as hydrophobic modifiers. The results indicated that BMIMPF6-AC-H exhibited superior hydrophobicity. The toluene adsorption capacity of BMIMPF6-AC-H was 1.53 times higher than that of original activated carbon, while the adsorption capacity for water vapor was only 37.30% of it at 27 °C and 77% RH. The Y-N model well-fitted the dynamic adsorption experiments. To elucidate the microscopic mechanism of hydrophobic modification, the Independent Gradient Model (IGM) method was employed to characterize the intermolecular interactions between BMIMPF6 and toluene. Overall, this study introduces a new modifier for hydrophobic modification of activated carbon, which could enhance the efficiency of activated carbon in treating industrial VOCs.

3.
Eur J Med Chem ; 272: 116464, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704940

RESUMEN

Diabetes mellitus is a chronic metabolic disorder characterized by high blood glucose levels, which can cause many diseases, including osteoporosis, fractures, arthritis, and foot complications. The inhibitors of dipeptidyl peptidase-4 (DPP-4), an enzyme involved in glucose metabolism regulation, are essential for managing Type 2 Diabetes Mellitus (T2DM). The inhibition of DPP-4 has become a promising treatment approach for T2DM because it can increase levels of active glucagon-like peptide-1 (GLP-1), leading to improved insulin secretion in response to glucose and reduced release of glucagon. The review commences by elucidating the role of DPP-4 in glucose homeostasis and its significance in T2DM pathophysiology. Furthermore, it presents the mechanism of action, preclinical pharmacodynamics, clinical efficacy, and toxicity profiles of small-molecule DPP-4 inhibitors across various clinical stages. This comprehensive review provides valuable insights into the synthesis and clinical application of DPP-4 inhibitors, serving as an invaluable resource for researchers, clinicians, and pharmaceutical professionals interested in diabetes therapeutics and drug development.

4.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746255

RESUMEN

Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type-specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing (scRNA-Seq) studies. By quantifying a surprisingly strong correlation between species-and cell type-specific divergence in three closely related Drosophila species, we apply a simple statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25-30 million years of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time, contrasting with traditional hourglass models of whole-organism development. With these cross-species cell type classifications, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first demonstrate how mechanistic control of pre-meiotic transcription is achieved by altering transcriptional burst size while post-meiotic control is exerted via altered bursting frequency. We then report how global differences in autosomal vs. X chromosomal transcription likely arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of the transcriptional bursting properties of neighboring genes during key stages of spermatogenesis.

5.
Food Chem ; 452: 139606, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38744127

RESUMEN

In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.

6.
Sci Rep ; 14(1): 11002, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745014

RESUMEN

The recommended bearing capacity of medium weathering mudstone foundation is less than the capacity of the rock structure to withstand loads in Southwest China. A comprehensive failure characterization of medium weathering mudstone in Chengdu has been performed including bearing plate test (BPT), binocular vision measurement (BVM) test, uniaxial compressive strength test, trial trench test of shallow rock surface and 3D imaging in this paper. Failure behavior of rock has been modeled with 3D imaging algorithm that utilizes Zhang's calibration method in BVM system combination with trial trench test of shallow rock surface. The bearing capacity of medium weathering mudstone foundation were extracted from uniaxial experiments and BPT-BVM test by fitting relevant material properties to the data. The results revealed that: Bearing capacity of medium weathering mudstone of layered isotropic in Chengdu is undervalued. Specifically, the characteristic load carrying value is in the range 1500-2500 kP, that is 50% higher than in the local standard system. Failure process is different from Hoek-Brown Failure Criterion, presenting a wave peak transfer phenomenon of the increment displacement into the distance. Thus, it can be reduced to that of punching failures for thin bedded structures of Moudstone foundations. Compressive strength of soft rock proves to be main factor limiting the bearing capacity, a clear correlation between the uniaxial compressive strength reduction coefficient and the bearing capacity has been used to establish, leading to the proposal of a load bearing capacity prediction model.

7.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701940

RESUMEN

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.

8.
Int J Gen Med ; 17: 1861-1876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715745

RESUMEN

Objective: This bibliometric analysis and review aimed to examine the current research status and trends in the combination of nutrition and exercise training for sarcopenia. Additionally, it sought to provide researchers with future research directions in this field. Methods: Relevant publications were obtained from the Web of Science Core Collection (WoSCC) database, covering the period from January 1995 to October 2023. The collected publications were analyzed using CiteSpace, VOSviewer, Bibliometrix, and Review Manager. Results: Out of the 2528 retrieved publications, the United States emerged as the leading contributor in terms of publication volume. The University of Texas System was identified as the most productive institution. Luc J C van Loon emerged as the most published author in this field. Analysis of keywords revealed recent hot topics and emerging areas of interest, such as "gut microbiota" and "mechanisms". Upon further evaluation, resistance training (RT) and protein supplementation were identified as the most commonly employed and effective methods. Conclusion: RT and protein supplementation are widely recognized as effective strategies. Future research should focus on investigating the molecular aspects of sarcopenia. Moreover, the potential therapeutic role of gut microbiota in sarcopenia requires further comprehensive investigation in human subjects to establish its correlation.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38709893

RESUMEN

Engineering symmetry breaking in thermoelectric materials holds promise for achieving an optimal thermoelectric efficiency. van der Waals (vdW) layered transition metal dichalcogenides (TMDCs) provide critical opportunities for manipulating the intrinsic symmetry through in-plane symmetry breaking interlayer twists and out-of-plane symmetry breaking heterostructures. Herein, the symmetry-dependent thermoelectric properties of MoS2 and MoSe2 obtained via first-principles calculations are reported, yielding an advanced ZT of 2.96 at 700 K. The underlying mechanisms reveal that the in-plane symmetry breaking results in a lowest thermal conductivity of 1.96 W·m-1·K-1. Additionally, the electric properties can be significantly modulated through band flattening and bandgap alteration, stemming directly from the modified interlayer electronic coupling strength owing to spatial repulsion effects. In addition, out-of-plane symmetry breaking induces band splitting, leading to a decrease in the degeneracy and complex band structures. Consequently, the power factor experiences a notable enhancement from ∼1.32 to 1.71 × 10-2 W·m-1·K-2, which is attributed to the intricate spatial configuration of charge densities and the resulting intensified intralayer electronic coupling. Upon simultaneous implementation of in-plane and out-of-plane symmetry breaking, the TMDCs exhibit an indirect bandgap to direct bandgap transition compared to the pristine structure. This work demonstrates an avenue for optimizing thermoelectric performance of TMDCs through the implementation of symmetry breaking.

10.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709366

RESUMEN

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Dosificación de Gen , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Expresión Génica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
11.
Cell Discov ; 10(1): 48, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710677

RESUMEN

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.

12.
Nat Commun ; 15(1): 3782, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710678

RESUMEN

Thermoelectrics have great potential for use in waste heat recovery to improve energy utilization. Moreover, serving as a solid-state heat pump, they have found practical application in cooling electronic products. Nevertheless, the scarcity of commercial Bi2Te3 raw materials has impeded the sustainable and widespread application of thermoelectric technology. In this study, we developed a low-cost and earth-abundant PbS compound with impressive thermoelectric performance. The optimized n-type PbS material achieved a record-high room temperature ZT of 0.64 in this system. Additionally, the first thermoelectric cooling device based on n-type PbS was fabricated, which exhibits a remarkable cooling temperature difference of ~36.9 K at room temperature. Meanwhile, the power generation efficiency of a single-leg device employing our n-type PbS material reaches ~8%, showing significant potential in harvesting waste heat into valuable electrical power. This study demonstrates the feasibility of sustainable n-type PbS as a viable alternative to commercial Bi2Te3, thereby extending the application of thermoelectrics.

14.
J Environ Manage ; 359: 120979, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692033

RESUMEN

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.

15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 596-606, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621863

RESUMEN

This study aims to optimize the prediction model of personalized water pills that has been established by our research group. Dioscoreae Rhizoma, Leonuri Herba, Codonopsis Radix, Armeniacae Semen Amarum, and calcined Oyster were selected as model medicines of powdery, fibrous, sugary, oily, and brittle materials, respectively. The model prescriptions were obtained by uniform mixing design. With hydroxypropyl methylcellulose E5(HPMC-E5) aqueous solution as the adhesive, personalized water pills were prepared by extrusion and spheronizaition. The evaluation indexes in the pill preparation process and the multi-model statistical analysis were employed to optimize and evaluate the prediction model of personalized water pills. The prediction equation of the adhesive concentration was obtained as follows: Y_1=-4.172+3.63X_A+15.057X_B+1.838X_C-0.997X_D(adhesive concentration of 10% when Y_1<0, and 20% when Y_1>0). The overall accuracy of the prediction model for adhesive concentration was 96.0%. The prediction equation of adhesive dosage was Y_2=6.051+94.944X_A~(1.5)+161.977X_B+70.078X_C~2+12.016X_D~(0.3)+27.493X_E~(0.3)-2.168X_F~(-1)(R~2=0.954, P<0.001). Furthermore, the semantic prediction model for material classification of traditional Chinese medicines was used to classify the materials contained in the prescription, and thus the prediction model of personalized water pills was evaluated. The results showed that the prescriptions for model evaluation can be prepared with one-time molding, and the forming quality was better than that established by the research group earlier. This study has achieved the optimization of the prediction model of personalized water pills.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Agua , Semántica , Prescripciones
16.
World J Diabetes ; 15(4): 638-644, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680701

RESUMEN

BACKGROUND: Age is a significant risk factor of diabetes mellitus (DM). With the develop of population aging, the incidence of DM remains increasing. Understanding the epidemiology of DM among elderly individuals in a certain area contributes to the DM interventions for the local elderly individuals with high risk of DM. AIM: To explore the prevalence of DM among elderly individuals in the Lugu community and analyze the related risk factors to provide a valid scientific basis for the health management of elderly individuals. METHODS: A total of 4816 elderly people who came to the community for physical examination were retrospectively analyzed. The prevalence of DM among the elderly was calculated. The individuals were divided into a DM group and a non-DM group according to the diagnosis of DM to compare the differences in diastolic blood pressure (DBP) and systolic blood pressure (SBP), fasting blood glucose, body mass index (BMI), waist-to-hip ratio (WHR) and incidence of hypertension (HT), coronary heart disease (CHD), and chronic kidney disease (CKD). RESULTS: DM was diagnosed in 32.70% of the 4816 elderly people. The BMI of the DM group (25.16 ± 3.35) was greater than that of the non-DM group (24.61 ± 3.78). The WHR was 0.90 ± 0.04 in the non-DM group and 0.90 ± 0.03 in the DM group, with no significant difference. The left SBP and SBP in the DM group were 137.9 mmHg ± 11.92 mmHg and 69.95 mmHg ± 7.75 mmHg, respectively, while they were 126.6 mmHg ± 12.44 mmHg and 71.15 mmHg ± 12.55 mmHg, respectively, in the non-DM group. These findings indicate higher SBP and lower DBP in DM patients than in those without DM. In the DM group, 1274 patients were diagnosed with HT, accounting for 80.89%. Among the 3241 non-DM patients, 1743 (53.78%) were hypertensive and 1498 (46.22%) were nonhypertensive. The DM group had more cases of HT than did the non-DM group. There were more patients with CHD or CKD in the DM group than in the non-DM group. There were more patients who drank alcohol more frequently (≥ 3 times) in the DM group than in the non-DM group. CONCLUSION: Older adults in the Lugu community are at a greater risk of DM. In elderly individuals, DM is closely related to high BMI and HT, CHD, and CKD. Physical examinations should be actively carried out for elderly people to determine their BMI, SBP, DBP, and other signs, and sufficient attention should be given to abnormalities in the above signs before further diagnosis.

17.
Phys Chem Chem Phys ; 26(17): 13506-13514, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651980

RESUMEN

Fluorescent probes have become promising tools for monitoring the concentration of peroxynitrite, which is linked to many diseases. However, despite focusing on developing numerous peroxynitrite based fluorescent probes, limited emphasis is placed on their sensing mechanism. Here, we investigated the sensing mechanism of a peroxynitrite fluorescent probe, named BHID-Bpin, with a focus on the relevant excited state dynamics. The photoexcited BHID-Bpin relaxes to its ground state via an efficient nonradiative process (∼300 ps) due to the presence of a minimum energy conical intersection between its first excited state and ground state. However, upon reacting with peroxynitrite, the Bpin moiety is cleaved from BHID-Bpin and BHID is formed. The formed BHID exhibits strong dual band fluorescence which is caused by an ultrafast excited-state intramolecular proton transfer process (∼1 ps).

18.
Gen Comp Endocrinol ; 353: 114513, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604437

RESUMEN

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Asunto(s)
Caquexia , Atrofia Muscular , Miostatina , Neoplasias , Sarcopenia , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Caquexia/metabolismo , Caquexia/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcopenia/metabolismo , Sarcopenia/patología , Transducción de Señal/fisiología , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Factor de Crecimiento Transformador beta/metabolismo , Miostatina/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
19.
Org Lett ; 26(17): 3557-3562, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652078

RESUMEN

A sequential dearomatization/rearrangement reaction between quinazoline-derived azomethine imines and crotonate sulfonium salts has been developed to provide a series of three-dimensional cage-like molecules. The reaction involves two dearomatizations, two cyclizations, and two C-C bond and three C-N bond formations in one step. The new transformation has a broad substrate scope, does not require any added reagents, and proceeds under room temperature in a short time. A mechanistic rationale for the sequential dearomatization/rearrangement is also presented. Furthermore, the synthetic compounds are evaluated for their glucose control effect. Compounds 3aa and 3aj were found to be hyperglycemic, which might be lead compounds for treating hypoglycemia.

20.
Neuroreport ; 35(9): 577-583, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38687887

RESUMEN

Pyroptosis, a form of programmed cell death, drives inflammation in the context of cerebral ischemia/reperfusion. The molecular mechanism of pyroptosis underlying ischemia/reperfusion, however, is not fully understood. The transient middle cerebral artery occlusion was applied to wild-type and caspase-1 knockout mice. 2,3,5-Triphenyltetrazolium chloride-staining and immunohistochemistry were used to identify the ischemic region, and western blot and immunofluorescence for the examination of neuronal pyroptosis. The expression of inflammatory factors and the behavioral function assessments were further conducted to examine the effects of caspase-1 knockout on protection against ischemia/reperfusion injury. Ischemia/reperfusion injury increased pyroptosis-related signals represented by the overexpression of pyroptosis-related proteins including caspase-1 and gasdermin D (GSDMD). Meanwhile, the number of GSDMD positive neurons increased in penumbra by immunofluorescence staining. Compared with wild-type mice, those with caspase-1 knockout exhibited decreased levels of pyroptosis-related proteins following ischemia/reperfusion. Furthermore, ischemia/reperfusion attack-induced brain infarction, cerebral edema, inflammatory factors, and neurological outcomes were partially improved in caspase-1 knockout mice. The data indicate that pyroptosis participates in ischemia/reperfusion induced-damage, and the caspase-1 might be involved, it provides some new insights into the molecular mechanism of ischemia.


Asunto(s)
Caspasa 1 , Infarto de la Arteria Cerebral Media , Ratones Noqueados , Piroptosis , Daño por Reperfusión , Animales , Piroptosis/fisiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Caspasa 1/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratones , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...