Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37790579

RESUMEN

Ubiquitination is a crucial posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila, the bacterium responsible for Legionnaires' disease. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. In this study, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on the phosphoribosyl-Ub (PR-Ub) conjugated to host targets by Sde. Remarkably, the Ub moieties within the poly-Ub chains are either modified with a phosphoribosyl group by Sde and other PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated PR-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors, such as p62, and therefore exclude host autophagy adaptors from the LCV. Our findings shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.

2.
JMIR Med Inform ; 10(9): e37812, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36099001

RESUMEN

BACKGROUND: Severe drug hypersensitivity reactions (DHRs) refer to allergic reactions caused by drugs and usually present with severe skin rashes and internal damage as the main symptoms. Reporting of severe DHRs in hospitals now solely occurs through spontaneous reporting systems (SRSs), which clinicians in charge operate. An automatic identification system scrutinizes clinical notes and reports potential severe DHR cases. OBJECTIVE: The goal of the research was to develop an automatic identification system for mining severe DHR cases and discover more DHR cases for further study. The proposed method was applied to 9 years of data in pediatrics electronic health records (EHRs) of Beijing Children's Hospital. METHODS: The phenotyping task was approached as a document classification problem. A DHR dataset containing tagged documents for training was prepared. Each document contains all the clinical notes generated during 1 inpatient visit in this data set. Document-level tags correspond to DHR types and a negative category. Strategies were evaluated for long document classification on the openly available National NLP Clinical Challenges 2016 smoking task. Four strategies were evaluated in this work: document truncation, hierarchy representation, efficient self-attention, and key sentence selection. In-domain and open-domain pretrained embeddings were evaluated on the DHR dataset. An automatic grid search was performed to tune statistical classifiers for the best performance over the transformed data. Inference efficiency and memory requirements of the best performing models were analyzed. The most efficient model for mining DHR cases from millions of documents in the EHR system was run. RESULTS: For long document classification, key sentence selection with guideline keywords achieved the best performance and was 9 times faster than hierarchy representation models for inference. The best model discovered 1155 DHR cases in Beijing Children's Hospital EHR system. After double-checking by clinician experts, 357 cases of severe DHRs were finally identified. For the smoking challenge, our model reached the record of state-of-the-art performance (94.1% vs 94.2%). CONCLUSIONS: The proposed method discovered 357 positive DHR cases from a large archive of EHR records, about 90% of which were missed by SRSs. SRSs reported only 36 cases during the same period. The case analysis also found more suspected drugs associated with severe DHRs in pediatrics.

3.
Curr Opin Struct Biol ; 72: 219-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959033

RESUMEN

Protein-protein interfaces have been attracting great attention owing to their critical roles in protein-protein interactions and the fact that human disease-related mutations are generally enriched in them. Recently, substantial research progress has been made in this field, which has significantly promoted the understanding and treatment of various human diseases. For example, many studies have discovered the properties of disease-related mutations. Besides, as more large-scale experimental data become available, various computational approaches have been proposed to advance our understanding of disease mutations from the data. Here, we overview recent advances in characteristics of disease-related mutations at protein-protein interfaces, mutation effects on protein interactions, and investigation of mutations on specific diseases.


Asunto(s)
Proteínas , Humanos , Mutación , Proteínas/genética , Proteínas/metabolismo
4.
Ren Fail ; 43(1): 1479-1491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34723750

RESUMEN

BACKGROUND: End-stage renal disease (ESRD) is the final stage during the development of renal failure. Depression is the most common psychiatric disorder in patients with ESRD, which in turn aggravates the progression of renal failure, however, its underlying mechanism remains unclear. This study aimed to reveal the pathogenesis and to discover novel peripheral biomarkers for ESRD patients with depression through metabolomic analysis. METHODS: Ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used to explore changes of serum metabolites among healthy controls, ESRD patients with or without depression. The differential metabolites between groups were subjected to clustering analysis, pathway analysis, receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 57 significant serum differential metabolites were identified between ESRD patients with or without depression, which were involved in 19 metabolic pathways, such as energy metabolism, glycerolipid metabolism, and glutamate-centered metabolism. Moreover, the area under the ROC curve of gentisic acid, uric acid, 5-hydroxytryptamine, 2-phosphoglyceric acid, leucyl-phenylalanine, propenyl carnitine, naloxone, pregnenolone, 6-thioxanthene 5'-monophosphate, hydroxyl ansoprazole, zileuton O-glucuronide, cabergoline, PA(34:2), PG(36:1), probucol and their combination was greater than 0.90. CONCLUSIONS: Inflammation, oxidative stress and energy metabolism abnormalities, glycerolipid metabolism, and glutamate-centered metabolism are associated with the pathogenesis of ESRD with depression, which may be promising targets for therapy. Furthermore, the identified differential metabolites may serve as biomarkers for the diagnosis of ESRD patients with depression.


Asunto(s)
Depresión/complicaciones , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Metabolómica/métodos , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión/métodos , Depresión/sangre , Metabolismo Energético , Femenino , Humanos , Inflamación , Fallo Renal Crónico/psicología , Metabolismo de los Lípidos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Estrés Oxidativo , Curva ROC , Espectrometría de Masas en Tándem/métodos
5.
Proteomics ; 21(23-24): e2100145, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647422

RESUMEN

Deciphering the interaction networks and structural dynamics of proteins is pivotal to better understanding their biological functions. Cross-linking mass spectrometry (XL-MS) is a powerful and increasingly popular technology that provides information about protein-protein interactions and their structural constraints for individual proteins and multiprotein complexes on a proteome-scale. In this review, we first assess the coverage and depth of the XL-MS technique by utilizing publicly available datasets. We then delve into the progress in XL-MS experimental and computational methodologies and examine different quality-control strategies reported in the literature. Finally, we discuss the progress in XL-MS applications along with the scope for future improvements.


Asunto(s)
Proteoma , Proteómica , Reactivos de Enlaces Cruzados , Espectrometría de Masas , Complejos Multiproteicos
6.
Nucleic Acids Res ; 49(16): 9327-9341, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34390347

RESUMEN

The DNA mismatch repair (MMR) factor Mlh1-Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1-Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker's yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1-Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1-Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Proteínas Intrínsecamente Desordenadas/genética , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética , Dominios Proteicos/genética , Multimerización de Proteína/genética , Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/genética
7.
Front Pediatr ; 8: 171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373564

RESUMEN

Background: This study proposes a quantitative 2-stage procedure to detect potential drug-induced liver injury (DILI) signals in pediatric inpatients using an data warehouse of electronic health records (EHRs). Methods: Eight years of medical data from a constructed database were used. A two-stage procedure was adopted: (i) stage 1: the drugs suspected of inducing DILI were selected and (ii) stage 2: the associations between the drugs and DILI were identified in a retrospective cohort study. Results: 1,196 drugs were filtered initially and 12 drugs were further potentially identified as suspect drugs inducing DILI. Eleven drugs (fluconazole, omeprazole, sulfamethoxazole, vancomycin, granulocyte colony-stimulating factor (G-CSF), acetaminophen, nifedipine, fusidine, oseltamivir, nystatin and meropenem) were showed to be associated with DILI. Of these, two drugs, nystatin [odds ratio[OR]=1.39, 95%CI:1.10-1.75] and G-CSF (OR = 1.91, 95%CI:1.55-2.35), were found to be new potential signals in adults and children. Three drugs [nifedipine [OR = 1.77, 95%CI:1.26-2.46], fusidine [OR = 1.43, 95%CI:1.08-1.86], and oseltamivi r [OR = 1.64, 95%CI:1.23-2.18]] were demonstrated to be new signals in pediatrics. The other drug-DILI associations had been confirmed in previous studies. Conclusions: A quantitative algorithm to detect potential signals of DILI has been described. Our work promotes the application of EHR data in pharmacovigilance and provides candidate drugs for further causality assessment studies.

8.
J Med Chem ; 63(9): 4908-4928, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32321253

RESUMEN

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an eight-pass transmembrane protein in the endoplasmic reticulum (ER) and a classical drug target to treat dyslipidemia. Statins including the well-known atorvastatin (Lipitor; Pfizer) have been widely used for the prevention and treatment of cardiovascular disease for decades. However, statins can elicit a compensatory upregulation of HMGCR protein and cause adverse effects including skeletal muscle damage. They are ineffective for patients with statin intolerance. Inspired by the recently emerging proteolysis-targeting chimeras (PROTACs), we set out to eliminate HMGCR protein using PROTAC-mediated degradation. One PROTAC designated as P22A was found to reduce HMGCR protein level and block cholesterol biosynthesis potently with less compensatory upregulation of HMGCR. To the best of our knowledge, HMGCR is the first ER-localized, polytopic transmembrane protein successfully degraded by the PROTAC technique. This finding may provide a new strategy to lower cholesterol levels and treat the associated diseases.


Asunto(s)
Atorvastatina/análogos & derivados , Atorvastatina/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proteolisis/efectos de los fármacos , Talidomida/análogos & derivados , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Colesterol/metabolismo , Cricetulus , Diseño de Fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Talidomida/síntesis química , Talidomida/farmacología , Ubiquitina-Proteína Ligasas
9.
Cell Rep ; 28(13): 3406-3422.e7, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553910

RESUMEN

Insulin-stimulated hepatic glycogen synthesis is central to glucose homeostasis. Here, we show that PPP1R3G, a regulatory subunit of protein phosphatase 1 (PP1), is directly phosphorylated by AKT. PPP1R3G phosphorylation fluctuates with fasting-refeeding cycle and is required for insulin-stimulated dephosphorylation, i.e., activation of glycogen synthase (GS) in hepatocytes. In this study, we demonstrate that knockdown of PPP1R3G significantly inhibits insulin response. The introduction of wild-type PPP1R3G, and not phosphorylation-defective mutants, increases hepatic glycogen deposition, blood glucose clearance, and insulin sensitivity in vivo. Mechanistically, phosphorylated PPP1R3G displays increased binding for, and promotes dephosphorylation of, phospho-GS. Furthermore, PPP1R3B, another regulatory subunit of PP1, binds to the dephosphorylated GS, thereby relaying insulin stimulation to hepatic glycogen deposition. Importantly, this PP1-mediated signaling cascade is independent of GSK3. Therefore, we reveal a regulatory axis consisting of insulin/AKT/PPP1R3G/PPP1R3B that operates in parallel to the GSK3-dependent pathway, controlling glycogen synthesis and glucose homeostasis in insulin signaling.


Asunto(s)
Insulina/metabolismo , Glucógeno Hepático/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Transducción de Señal
10.
Cell Discov ; 5: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729032

RESUMEN

Although conventional genetic modification approaches for protein knockdown work very successfully due to the increasing use of CRISPR/Cas9, effective techniques for achieving protein depletion in adult animals, especially in large animals such as non-human primates, are lacking. Here, we report a chemical approach based on PROTACs technology that efficiently and quickly knocks down FKBP12 (12-kDa FK506-binding) protein globally in vivo. Both intraperitoneal and oral administration led to rapid, robust, and reversible FKBP12 degradation in mice. The efficiency and practicality of this method were successfully demonstrated in both large and small animals (mice, rats, Bama pigs, and rhesus monkeys). Furthermore, we showed this approach can also be applied to effectively knockdown other target proteins such as Bruton's tyrosine kinase (BTK). This chemical protein knockdown strategy provides a powerful research tool for gene function studies in animals, particularly in large animals, for which gene-targeted knockout strategies may remain unfeasible.

11.
Chem Commun (Camb) ; 55(3): 369-372, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30540295
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...