Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625942

RESUMEN

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

2.
J Am Chem Soc ; 146(9): 6199-6208, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394360

RESUMEN

A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.

3.
J Am Chem Soc ; 145(44): 24284-24293, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888942

RESUMEN

Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.

4.
JACS Au ; 3(8): 2107-2116, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37654583

RESUMEN

Zn-based aqueous batteries (ZABs) hold great promise for large-scale energy storage applications due to the merits of intrinsic safety and low cost. Nevertheless, the thorny issues of metallic Zn anodes, including dendrite growth and parasitic side reactions, have severely limited the application of ZABs. Despite the encouraging improvements for stabilizing Zn anodes through surface modification, electrolyte optimization, and structural design, fundamentally addressing the inherent thermodynamics and kinetics obstacles of Zn anodes remains crucial in realizing reliable ZABs with ultrahigh efficiency, capacity, and cyclability. The target of this perspective is to elucidate the prominent status of Zn metal anode electrochemistry first from the perspective of zincophilicity and zincophobicity. Recent progress in ZABs is critically appraised for addressing the key issues, with special emphasis on the trade-off between zincophilic and zincophobic electrochemistry. Challenges and prospects for further exploration of a reliable Zn anode are presented, which are expected to boost in-depth research and practical applications of advanced ZABs.

5.
J Am Chem Soc ; 145(19): 10880-10889, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130056

RESUMEN

Tin is promising for aqueous batteries (ABs) due to its multiple electrons' reactions, high corrosion resistance, large hydrogen overpotential, and excellent environmental compatibility. However, restricted to the high thermodynamic barrier and the poor electrochemical kinetics, efficient alkaline Sn plating/stripping at facile conditions has not yet been realized. Here, for the first time, we demonstrate a highly reversible stannite-ion electrochemistry and construct a novel paradigm of high-energy Sn-based ABs. Combined spectroscopic characterization, electrochemical evaluation, and theoretical computation reveal the thermodynamic merits with a low reaction energy barrier and feasible H2O participation in Sn-ion reduction as well as the kinetic merits with fastened surface charge transfer and SnO22- diffusion. The resultant alkaline Sn anode delivers a low potential of -1.07 V vs Hg/HgO, a specific capacity of 450 mA h g-1, a Coulombic efficiency of near 100%, superb rate capability at 45.5 A g-1, and excellent cycling durability without dendrite and dead Sn. As a proof of concept, we developed new high-energy Sn-based ABs, including 1.45 V Sn-Ni with 314 W h kg-1 (58 kW kg-1 and over 15,000 cycles) and 1.0 V Sn-air with 420 W h kg-1 (lifespan over 1900 h), on the basis of masses from cathode and anode active materials. The findings prove the feasibility of the alkaline Sn metal anode, and the new suite of high-energy Sn-based ABs may be of immediate benefit toward safe, reliable, and affordable energy storage.

6.
Natl Sci Rev ; 10(6): nwac268, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37181097

RESUMEN

Sulfur-based aqueous batteries (SABs) are deemed promising candidates for safe, low-cost, and high-capacity energy storage. However, despite their high theoretical capacity, achieving high reversible value remains a great challenge due to the thermodynamic and kinetics problems of elemental sulfur. Here, the reversible six-electron redox electrochemistry is constructed by activating the sulfur oxidation reaction (SOR) process of the elaborate mesocrystal NiS2 (M-NiS2). Through the unique 6e- solid-to-solid conversion mechanism, SOR efficiency can reach an unprecedented degree of ca. 96.0%. The SOR efficiency is further revealed to be closely associated with the kinetics feasibility and thermodynamic stability of the M-NiS2 intermedium in the formation of elemental sulfur. Benefiting from the boosted SOR, compared with the bulk electrode, the M-NiS2 electrode exhibits a high reversible capacity (1258 mAh g-1), ultrafast reaction kinetics (932 mAh g-1 at 12 A g-1), and long-term cyclability (2000 cycles at 20 A g-1). As a proof of concept, a new M-NiS2‖Zn hybrid aqueous battery exhibits an output voltage of 1.60 V and an energy density of 722.4 Wh kgcath-1, which opens a new opportunity for the development of high-energy aqueous batteries.

7.
Adv Mater ; 35(17): e2209288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787111

RESUMEN

Poor thermodynamic stability and sluggish electrochemical kinetics of metallic Zn anode in aqueous solution greatly hamper its practical application. To solve such problems, to date, various zincophilic surface modification strategies are developed, which can facilitate reversible Zn plating/stripping behavior. However, there is still a lack of systematic and fundamental understanding regarding the metrics of thermodynamics inertia and kinetics zincophilia in selecting zincophilic sites. Herein, hetero-metallic interfaces are prioritized for the first time via optimizing different hetero metals (Fe, Co, Ni, Sn, Bi, Cu, Zn, etc.) and synthetic solvents (ethanol, ethylene glycol, n-propanol, etc.). Specifically, both theoretical simulations and experimental results suggest that this Bi@Zn interface can exhibit high efficiency owing to the thermodynamics inertia and kinetics zincophilia. A best practice for prioritizing zincophilic sites in a more practical metric is also proposed. As a proof of concept, the Bi@Zn anode delivers ultralow overpotential of ≈55 mV at a high rate of 10 mA cm-2 and stable cycle life over 4700 cycles. The elaborated "thermodynamics inertia and kinetics metalphilia" metrics for hetero-metallic interfaces can benchmark the success of other metal-based batteries.

8.
Small ; 19(10): e2207502, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650991

RESUMEN

Aqueous zinc-ion batteries hold attractive potential for large-scale energy storage devices owing to their prominent electrochemical performance and high security. Nevertheless, the applications of aqueous electrolytes have generated various challenges, including uncontrolled dendrite growth and parasitic reactions, thereby deteriorating the Zn anode's stability. Herein, inspired by the superior affinity between Zn2+ and amino acid chains in the zinc finger protein, a cost-effective and green glycine additive is incorporated into aqueous electrolytes to stabilize the Zn anode. As confirmed by experimental characterizations and theoretical calculations, the glycine additives can not only reorganize the solvation sheaths of hydrated Zn2+ via partial substitution of coordinated H2 O but also preferentially adsorb onto the Zn anode, thereby significantly restraining dendrite growth and interfacial side reactions. Accordingly, the Zn anode could realize a long lifespan of over 2000 h and enhanced reversibility (98.8%) in the glycine-containing electrolyte. Furthermore, the assembled Zn||α-MnO2 full cells with glycine-modified electrolyte also delivers substantial capacity retention (82.3% after 1000 cycles at 2 A g-1 ), showing promising application prospects. This innovative bio-inspired design concept would inject new vitality into the development of aqueous electrolytes.

9.
Nano Lett ; 22(10): 4223-4231, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35507684

RESUMEN

Zn-based aqueous batteries (ZABs) have been regarded as promising candidates for safe and large-scale energy storage in the "post-Li" era. However, kinetics and stability problems of Zn capture cannot be concomitantly regulated, especially at high rates and loadings. Herein, a hierarchical confinement strategy is proposed to design zincophilic and spatial traps through a host of porous Co-embedded carbon cages (denoted as CoCC). The zincophilic Co sites act as preferred nucleation sites with low nucleation barriers (within 0.5 mA h cm-2), and the carbon cage can further spatially confine Zn deposition (within 5.0 mA h cm-2). Theoretical simulations and in situ/ex situ structural observations reveal the hierarchical spatial confinement by the elaborated all-in-one network (within 12 mA h cm-2). Consequently, the elaborate strategy enables a dendrite-free behavior with excellent kinetics (low overpotential of ca. 65 mV at a high rate of 20 mA cm-2) and stable cycle life (over 800 cycles), pushing forward the next-generation high-performance ZABs.

10.
J Am Chem Soc ; 143(38): 15475-15489, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34510890

RESUMEN

While research interest in aqueous batteries has surged due to their intrinsic low cost and high safety, the practical application is plagued by the restrictive capacity (less than 600 mAh g-1) of electrode materials. Sulfur-based aqueous batteries (SABs) feature high theoretical capacity (1672 mAh g-1), compatible potential, and affordable cost, arousing ever-increasing attention and intense efforts. Nonetheless, the underlying electrochemistry of SABs remains unclear, including complicated thermodynamic evolution and insufficient kinetics metrics. Consequently, multifarious irreversible reactions in various application systems imply the systematic complexity of SABs. Herein, rather than simply compiling recent progress, this Perspective aims to construct a theory-to-application methodology. Theoretically, attention has been paid to a critical appraisal of the aqueous-S-related electrochemistry, including fundamental properties evaluation, kinetics metrics with transient and steady-state analyses, and thermodynamic equilibrium and evolution. To put it into practice, current challenges and promising strategies are synergistically proposed. Practically, the above efforts are employed to evaluate and develop the device-scale applications, scilicet flow-SABs, oxide-SABs, and metal-SABs. Last, chemical and engineering insights are rendered collectively for the future development of high-energy SABs.

12.
ACS Nano ; 14(10): 13938-13951, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32931254

RESUMEN

Taking into consideration the advantages of the highly theoretical capacity of antimony (Sb) and abundant surface redox reaction sites of Na+ pre-intercalated 3D porous Ti3C2Tx (Na-Ti3C2Tx) architectures, we elaborately designed the Sb/Na-Ti3C2Tx hybrid with Sb nanoparticles homogeneously distributed in 3D porous Na-Ti3C2Tx architectures through a facile electrostatic attraction and carbothermic reduction process. Na-Ti3C2Tx architectures with more open structures and larger active specific surface area not only could certainly alleviate volume changes and hinder the aggregation of Sb nanoparticles in the cycling process to improve the structural stability but also significantly strengthen the electron-transfer kinetics and provide unblocked K+ diffusion channels to promote ionic/electronic transport rate. Furthermore, the ultrafine Sb nanoparticles could efficiently shorten K+ transport distance and expose more accessible active sites to improve capacity utilization. DFT calculations further indicate that the Sb/Na-Ti3C2Tx anode effectively decreases the adsorption energy of K+ and accelerates the potassiation process. Benefiting from the synergistic effect, it exhibits an outstanding specific capacity of 392.2 mAh g-1 at 0.1 A g-1 after 450 cycles and a stable capacity reservation with a capacity fading rate of 0.03% per cycle at 0.5 A g-1. Our work may encourage further research on advanced MXene-based hybrid materials for high-performance PIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...