Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 1): 130225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368973

RESUMEN

The study presents a multifunctional catechol-modified chitosan (Chi-Ca)/oxidized dextran (Dex-CHO) hydrogel (CDP-PB) that possesses antibacterial, antioxidant, and pro-angiogenic properties, aimed at improving the healing of diabetic wounds. The achievement of the as-prepared CDP-PB hydrogel with superb antibacterial property (99.9 %) can be realized through the synergistic effect of phenylboronic acid-modified polyethyleneimine (PEI-PBA) and photothermal therapy (PTT) of polydopamine nanoparticles loaded with the nitric oxide (NO) donor BNN6 (PDA@BNN6). Notably, CDP-PB hydrogel achieves ∼3.6 log10 CFU/mL MRSA of inactivation efficiency under 808 nm NIR laser irradiation. In order to mitigate oxidative stress, the Chi-Ca was synthesized and afterward subjected to a reaction with Dex-CHO via a Schiff-base reaction. The catechol-containing hydrogel demonstrated its effectiveness in scavenging DPPH, •OH, and ABTS radicals (> 85 %). In addition, the cellular experiment illustrates the increased migration and proliferation of cells by the treatment of CDP-PB hydrogel in the presence of oxidative stress conditions. Moreover, the findings from the animal model experiments provide evidence that the CDP-PB hydrogel exhibited efficacy in the eradication of wound infection, facilitation of angiogenesis, stimulation of granulation, and augmentation of collagen deposition. These results indicate the potential of the CDP-PB hydrogel for use in clinical applications.


Asunto(s)
Quitosano , Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Animales , Antioxidantes/farmacología , Óxido Nítrico , Hidrogeles/farmacología , Dextranos , Cicatrización de Heridas , Catecoles , Antibacterianos/farmacología
2.
Adv Mater ; 36(18): e2311624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38281059

RESUMEN

Stretchable self-powered sensors are of significant interest in next-generation wearable electronics. However, current strategies for creating stretchable piezoelectric sensors based on piezoelectric polymers or 0-3 piezoelectric composites face several challenges such as low piezoelectric activity, low sensitivity, and poor durability. In this paper, a biomimetic soft-rigid hybrid strategy is used to construct a new form of highly flexible, high-performance, and stretchable piezoelectric sensor. Inspired by the hinged bivalve Cristaria plicata, hierarchical droplet-shaped ceramics are manufactured and used as rigid components, where computational models indicate that the unique arched curved surface and rounded corners of this bionic structure can alleviate stress concentrations. To ensure electrical connectivity of the piezoelectric phase during stretching, a patterned liquid metal acts as a soft circuit and a silicone polymer with optimized wettability and stretchability serves as a soft component that forms a strong mechanical interlock with the hierarchical ceramics. The novel sensor design exhibits excellent sensitivity and durability, where the open circuit voltage remains stable after 5000 stretching cycles at 60% strain and 5000 twisting cycles at 180°. To demonstrate its potential in heathcare applications, this new stretchable sensor is successfully used for wireless gesture recognition and assessing the progression of knee osteoarthritis.

3.
ACS Nano ; 17(22): 22844-22858, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37942890

RESUMEN

The immune checkpoint blockade (ICB) antibody immunotherapy has demonstrated clinical benefits for multiple cancers. However, the efficacy of immunotherapy in tumors is suppressed by deficient tumor immunogenicity and immunosuppressive tumor microenvironments. Pyroptosis, a form of programmed cell death, can release tumor antigens, activate effective tumor immunogenicity, and improve the efficiency of ICB, but efficient pyroptosis for tumor treatment is currently limited. Herein, we show a mild hyperthermia-enhanced pyroptosis-mediated immunotherapy based on hollow carbon nanozyme, which can specifically amplify oxidative stress-triggered pyroptosis and synchronously magnify pyroptosis-mediated anticancer responses in the tumor microenvironment. The hollow carbon sphere modified with iron and copper atoms (HCS-FeCu) with multiple enzyme-mimicking activities has been engineered to induce cell pyroptosis via the radical oxygen species (ROS)-Tom20-Bax-Caspase 3-gasdermin E (GSDME) signaling pathway under light activation. Both in vitro and in vivo antineoplastic results confirm the superiority of HCS-FeCu nanozyme-induced pyroptosis. Moreover, the mild photothermal-activated pyroptosis combining anti-PD-1 can enhance antitumor immunotherapy. Theoretical calculations further indicate that the mild photothermal stimulation generates high-energy electrons and enhances the interaction between the HCS-FeCu surface and adsorbed oxygen, facilitating molecular oxygen activation, which improves the ROS production efficiency. This work presents an approach that effectively transforms immunologically "cold" tumors into "hot" ones, with significant implications for clinical immunotherapy.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Piroptosis , Especies Reactivas de Oxígeno , Inmunoterapia , Carbono , Oxígeno , Microambiente Tumoral , Línea Celular Tumoral
4.
J Am Chem Soc ; 145(18): 10322-10332, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097216

RESUMEN

Designing nanozymes that match natural enzymes have always been an attractive and challenging goal. In general, researchers mainly focus on the construction of metal centers and the control of non-metallic ligands of nanozyme to regulate their activities. However, this is not applicable to lactate oxidase, i.e., flavoenzymes with flavin mononucleotide (FMN)-dependent pathways. Herein, we propose a coordination strategy to mimic lactate oxidase based on engineering the electronic properties at the N center by modulating the Co number near N in the Cox-N nanocomposite. Benefitting from the manipulated coordination fields and electronic structure around the electron-rich N sites, Co4N/C possesses a precise recognition site for lactate and intermediate organization and optimizes the absorption energies for intermediates, leading to superior oxidation of the lactate α-C-sp(3)-H bond toward ketone. The optimized nanozyme delivers much improved anticancer efficacy by reversing the high lactate and the immunosuppressive state of the tumor microenvironment, subsequently achieving excellent tumor growth and distant metastasis inhibition. The developed Co4N/C NEs open a new window for building a bridge between chemical catalysis and biocatalysis.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Nitrógeno , Oxigenasas de Función Mixta/química , Neoplasias/tratamiento farmacológico , Catálisis , Microambiente Tumoral
5.
Cancer Lett ; 558: 216106, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841418

RESUMEN

Hepatocellular carcinoma (HCC) is a common digestive tract malignancy that seriously threatens human life and health. Early HCC may be treated by intervention, surgery, and internal radiotherapy, while the choice for late HCC is primarily chemotherapy to prolong patient survival. Lenvatinib (LT) is a Food and Drug Administration (FDA)-approved frontline drug for the treatment of advanced liver cancer and has achieved excellent clinical efficacy. However, its poor solubility and severe side effects cannot be ignored. In this study, a bionic nanodrug delivery platform was successfully constructed. The platform consists of a core of Lenvatinib wrapped with a pH-sensitive polymer, namely, poly(ß-amino ester)-polyethylene glycol-amine (PAE-PEG-NH2), and a shell formed by a cancer cell membrane (CCM). The prepared nanodrugs have high drug loading capacity, long-term stability, good biocompatibility, and a long retention time. In addition, the targeting effect of tumor cell membranes and the pH-responsive characteristics of the polymer materials enable them to precisely target tumor cells and achieve responsive release in the tumor microenvironment, which makes them suitable for effective drug delivery. In vivo experiments revealed that the nanodrug showed superior tumor accumulation and therapeutic effects in subcutaneous tumor mice model and could effectively eliminate tumors within 21 days. As a result, it opens up a new way to reduce side effects and improve the specific therapeutic effect of first-line clinical medications to treat tumors.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Polímeros/uso terapéutico , Polietilenglicoles , Nanopartículas/uso terapéutico , Membrana Celular , Antineoplásicos/uso terapéutico , Microambiente Tumoral
6.
Small ; 18(52): e2205252, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344450

RESUMEN

Nanodrugs are becoming increasingly important in the treatment of bacterial infection, but their low penetration ability to bacterial biofilm is still the main challenge hindering their therapeutic effect. Herein, nitric oxide (NO)-driven nanomotor based on L-arginine (L-Arg) and gold nanoparticles (AuNPs) loaded dendritic mesoporous silica nanoparticles (AG-DMSNs) is fabricated. AG-DMSNs have the characteristics of cascade catalytic reaction, where glucose is first catalyzed by the asymmetrically distributed AuNPs with their glucose oxidase (GOx)- mimic property, which results in unilateral production of hydrogen peroxide (H2 O2 ). Then, L-Arg is oxidized by the produced H2 O2 to release NO, leading to the self-propelled movement. It is found that the active movement of nanomotor promotes the AG-DMSNs ability to penetrate biofilm, thus achieving good biofilm clearance in vitro. More importantly, AG-DMSNs nanomotor can eliminate the biofilm of methicillin-resistant Staphylococcus aureus (MRSA) in vivo without causing damage to normal tissues. This nanomotor provides a new platform for the treatment of bacterial infections.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Humanos , Óxido Nítrico , Oro/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
7.
ACS Nano ; 16(1): 485-501, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962762

RESUMEN

The tumor microenvironment (TME) featured by immunosuppression and hypoxia is pivotal to cancer deterioration and metastasis. Thus, regulating the TME to improve cancer cell ablation efficiency has received extensive interest in oncotherapy. However, to reverse the immunosuppression and alleviate hypoxia simultaneously in the TME are major challenges for effective cancer therapy. Herein, a multifunctional platform based on Au nanoparticles and a carbon dots modified hollow black TiO2 nanosphere (HABT-C) with intrinsic cascade enzyme mimetic activities is prepared for reversing immunosuppression and alleviating hypoxia in the TME. The HABT-C NPs possess triple-enzyme mimetic activity to act as self-cascade nanozymes, which produce sufficient oxygen to alleviate hypoxia and generate abundant ROS. The theoretical analysis demonstrates that black TiO2 facilitates absorption of H2O and O2, separation of electron-holes, and generation of ROS, consequently amplifying the sonodynamic therapy (SDT) efficiency. Specifically, HABT-C exhibits favorable inhibition of immunosuppressive mediator expression, along with infiltrating of immune effector cells into the TME and reversing the immunosuppression in the TME. As a result, HABT-C can effectively kill tumor cells via eliciting immune infiltration, alleviating hypoxia, and improving SDT efficiency. This cascade nanozyme-based platform (HABT-C@HA) will provide a strategy for highly efficient SDT against cancer by modulation of hypoxia and immunosuppression in the TME.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Oro/farmacología , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Hipoxia , Microambiente Tumoral , Oxígeno/metabolismo , Terapia de Inmunosupresión , Línea Celular Tumoral
8.
Small ; 17(47): e2103003, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561966

RESUMEN

Regulation of angiogenesis is a great challenge for effective anticancer therapy. Generally, anti-angiogenic therapies are focused on inhibition of inducers involved in pro-angiogenic communication pathways. Despite the great potential of anti-angiogenic therapy, engineering efficient angiogenesis inhibition agents (AIAs) is still a formidable challenge, since most anti-angiogenic therapies are limited due to the cancer recurrence via compensatory expression of different angiogenic mediators. Herein, we present a new strategy of near-infrared-II (NIR-II) responsive hydrogel AIAs, constructed by incorporation of nitric oxide (NO) precursor (BNN6) and 2D WO2.9 nanosheets within hydrogel (WB@hydrogel). Because of the defect/2D engineering, the bandgap of the WO2.9 nanosheets narrows, which extends the absorption to the NIR-II region. It offers a favorable NIR-II controlled manner for NO generation through irradiation time and light intensity. The continuous supply of NO can activate the expression of wild-type p53 protein and further reverse the transcriptional expression of pro- and anti-angiogenic factors of the tumor microenvironment (TME), subsequently alternating pro-angiogenic TME to anti-angiogenic TME. In the murine tumor model, this method achieved high tumor growth inhibition (TGI) rate and excellent anti-recurrence efficiency.


Asunto(s)
Hidrogeles , Neoplasias , Animales , Ratones , Óxido Nítrico , Microambiente Tumoral
9.
Adv Mater ; 33(27): e2008452, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34033180

RESUMEN

Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.


Asunto(s)
Materiales Biocompatibles , Electricidad , Ingeniería de Tejidos
10.
Chem Commun (Camb) ; 55(64): 9471-9474, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328205

RESUMEN

A hydrogel drug cargo based on 2D tungsten nitride nanosheets was fabricated. It exhibits stable NIR-II responsive photothermal properties and drug release behaviour. Moreover, this hydrogel shows excellent tumour ablation efficiency in vivo via NIR-II triggered multiple chemo/photothermal therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Hidrogeles , Hipertermia Inducida , Rayos Infrarrojos , Nanoestructuras/química , Fotoquimioterapia/métodos , Tungsteno/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...