Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889615

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most effective methods to convert CO2 into useful fuels. Introducing defects into metal nanostructures can effectively improve the catalytic activity and selectivity towards CO2RR. This review provides the recent progress on the use of metal nanomaterials with defects towards electrochemical CO2RR and defects engineering methods. Accompanying these ideas, we introduce the structure of defects characterized by electron microscopy techniques as the characterization and analysis of defects are relatively difficult. Subsequently, we present the intrinsic mechanism of how the defects affect CO2RR performance. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning defects engineering in metal nanomaterials towards CO2RR are put forward.

2.
RSC Adv ; 11(25): 15106-15117, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424058

RESUMEN

A ternary biochar/vanadium pentoxide/graphite like carbon nitride (BC/V2O5/g-C3N4 denoted BC/VO/CN) composite was prepared by a simple hydrothermal method and its photocatalytic performance was investigated under simulated solar irradiation. The BC/VO/CN was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, and photoluminescence spectroscopy. Within the BC/VO/CN composites VO nanoparticles were highly crystalline and intertwined with the lamellas of CN, resulting in the formation of well-defined Z-type heterostructures. The photocatalytic activity was evaluated using Rhodamine B as a model pollutant. Under simulated solar (230-780 nm) irradiation the as-prepared BC/VO/CN hybrid materials demonstrated highly improved photocatalytic activity compared to CN, VO and VO/CN. The cause of the solar enhancement could be ascribed to the formation of Z-type heterojunctions between VO and CN, which promoted faster electron-hole separation and more efficient charge transfer. BC, as an electron transfer medium, accelerated the transfer of photogenerated charge carriers and inhibited their recombination.

3.
Environ Sci Ecotechnol ; 8: 100111, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156993

RESUMEN

Chlorination has been intensively investigated for use in water disinfection and pollutant elimination due to its efficacy and convenience; however, the generation and transportation of chlorine and hypochlorite are energy-consuming and complicated. In this study, a novel binary photosensitizer consisting of anthraquinone-2-sulfonate (AQ2S) and graphene was synthesized via a π-π stack adsorption method; this compound could allow for the chlorination of organic pollutants using on-site chlorine generation. In this photosensitive degradation process, sulfapyridine (SPY) was selected as a model pollutant and was decomposed by the reactive species (Cl2 •-, Cl• and O2 •-) generated during the photosensitive oxidation of chloride. The synthesized AQ2S/graphene exhibited superior activity, and the degradation rate of SPY was over 90 % after 12 h of visible light irradiation with a kinetic constant of 0.2034h-1. Results show that 20 mg AQ2S/GR at a 21 % weight percentage of AQ2S in a pH 7 SPY solution with 1 mol/L Cl- achieved the highest kinetics rate at 0.353 h-1. Free radical trapping experiments demonstrated that Cl2 •- and O2 •- were the dominant species involved in SPY decomposition under solar light. The reusability and stability of this composite were verified by conducting a cycle experiment over five successive runs. The capacity of photodegradation still remained over 90 % after these 5 runs. The current study provides an energy-efficient and simple-operational approach for water phase SPY control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA