Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 146(22): 15356-15365, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38773696

RESUMEN

Electrosynthesis has emerged as an enticing solution for hydrogen peroxide (H2O2) production. However, efficient H2O2 generation encounters challenges related to the robust gas-liquid-solid interface within electrochemical reactors. In this work, we introduce an effective hydrophobic coating modified by iron (Fe) sites to optimize the reaction microenvironment. This modification aims to mitigate radical corrosion through Fe(II)/Fe(III) redox chemistry, reinforcing the reaction microenvironment at the three-phase interface. Consequently, we achieved a remarkable yield of up to 336.1 mmol h-1 with sustained catalyst operation for an extensive duration of 230 h at 200 mA cm-2 without causing damage to the reaction interface. Additionally, the Faradaic efficiency of H2O2 exceeded 90% across a broad range of test current densities. This surface redox chemistry approach for manipulating the reaction microenvironment not only advances long-term H2O2 electrosynthesis but also holds promise for other gas-starvation electrochemical reactions.

2.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675717

RESUMEN

In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Glicosilación , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Diseño de Fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/síntesis química , Glicopéptidos/química , Glicopéptidos/síntesis química , Glicopéptidos/farmacología , Microambiente Tumoral/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral
3.
Angew Chem Int Ed Engl ; 63(23): e202404763, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38588210

RESUMEN

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.

4.
Acta Pharm Sin B ; 14(3): 1150-1165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486998

RESUMEN

Aside from antibodies, peptides show great potential as immune checkpoint inhibitors (ICIs) due to several advantages, such as better tumor penetration and lower cost. Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint which can induce T cell dysfunction through interaction with its soluble ligand fibrinogen like protein-1 (FGL1). Here, we found that LAG-3 expression was higher than programmed cell death protein 1 (PD-1) in multiple human cancers by TCGA databases, and successfully identified a LAG-3 binding peptide LFP-6 by phage display bio-panning, which specifically blocks the interaction of LAG-3/FGL1 but not LAG-3/MHC-II. Subsequently, d-amino acids were introduced to substitute the N- and C-terminus of LFP-6 to obtain the proteolysis-resistant peptide LFP-D1, which restores T cell function in vitro and inhibits tumor growth in vivo. Further, a bispecific peptide LFOP targeting both PD-1/PD-L1 and LAG-3/FGL1 was designed by conjugating LFP-D1 with PD-1/PD-L1 blocking peptide OPBP-1(8-12), which activates T cell with enhanced proliferation and IFN-γ production. More importantly, LFOP combined with radiotherapy significantly improve the T cell infiltration in tumor and elevate systemic antitumor immune response. In conclusion, we developed a novel peptide blocking LAG-3/FGL1 which can restore T cell function, and the bispecific peptide synergizes with radiotherapy to further enhance the antitumor immune response.

5.
Cell Commun Signal ; 22(1): 173, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462636

RESUMEN

BACKGROUND: Targeting the tumor microenvironment (TME) has emerged as a promising strategy in cancer treatment, particularly through the utilization of immune checkpoint blockade (ICB) agents such as PD-1/PD-L1 inhibitors. Despite partial success, the presence of tumor-associated macrophages (TAMs) contributes to an immunosuppressive TME that fosters tumor progression, and diminishes the therapeutic efficacy of ICB. Blockade of the CD47/SIRPα pathway has proven to be an effective intervention, that restores macrophage phagocytosis and yields substantial antitumor effects, especially when combined with PD-1/PD-L1 blockade. Therefore, the identification of small molecules capable of simultaneously blocking CD47/SIRPα and PD-1/PD-L1 interactions has remained imperative. METHODS: SMC18, a small molecule with the capacity of targeting both SIRPα and PD-L1 was obtained using MST. The efficiency of SMC18 in interrupting CD47/SIRPα and PD-1/PD-L1 interactions was tested by the blocking assay. The function of SMC18 in enhancing the activity of macrophages and T cells was tested using phagocytosis assay and co-culture assay. The antitumor effects and mechanisms of SMC18 were investigated in the MC38-bearing mouse model. RESULTS: SMC18, a small molecule that dual-targets both SIRPα and PD-L1 protein, was identified. SMC18 effectively blocked CD47/SIRPα interaction, thereby restoring macrophage phagocytosis, and disrupted PD-1/PD-L1 interactions, thus activating Jurkat cells, as evidenced by increased secretion of IL-2. SMC18 demonstrated substantial inhibition of MC38 tumor growths through promoting the infiltration of CD8+ T and M1-type macrophages into tumor sites, while also priming the function of CD8+ T cells and macrophages. Moreover, SMC18 in combination with radiotherapy (RT) further improved the therapeutic efficacy. CONCLUSION: Our findings suggested that the small molecule compound SMC18, which dual-targets the CD47/SIRPα and PD-1/PD-L1 pathways, could be a candidate for promoting macrophage- and T-cell-mediated phagocytosis and immune responses in cancer immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Antígeno CD47/metabolismo , Antígeno B7-H1 , Fagocitosis , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral
6.
Science ; 383(6688): 1198-1204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484055

RESUMEN

Printable mesoscopic perovskite solar cells (p-MPSCs) do not require the added hole-transport layer needed in traditional p-n junctions but have also exhibited lower power conversion efficiencies of about 19%. We performed device simulation and carrier dynamics analysis to design a p-MPSC with mesoporous layers of semiconducting titanium dioxide, insulating zirconium dioxide, and conducting carbon infiltrated with perovskite that enabled three-dimensional injection of photoexcited electrons into titanium dioxide for collection at a transparent conductor layer. Holes underwent long-distance diffusion toward the carbon back electrode, and this carrier separation reduced recombination at the back contact. Nonradiative recombination at the bulk titanium dioxide/perovskite interface was reduced by ammonium phosphate modification. The resulting p-MPSCs achieved a power conversion efficiency of 22.2% and maintained 97% of their initial efficiency after 750 hours of maximum power point tracking at 55 ± 5°C.

7.
Biochem Pharmacol ; 223: 116162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527557

RESUMEN

Immune checkpoint inhibitors have unveiled promising clinical prospects in cancer treatment. Nonetheless, their effectiveness remains restricted, marked by consistently low response rates and affecting only a subset of patients. The co-blockade of TIGIT with PD-1 has exhibited substantial anti-tumor effects. Notably, there is a dearth of reports on small-molecule inhibitors concurrently targeting both TIGIT and PD-1. In this study, we employed Microscale Thermophoresis (MST) to screen our laboratory's existing repository of small molecules. Our findings illuminated Gln(TrT) 's affinity for both TIGIT and PD-1, affirming its potential to effectively inhibit TIGIT/PVR and PD-1/PD-L1 pathways. In vitro co-culture experiments substantiated Gln(TrT)'s proficiency in restoring Jurkat T-cell functionality by blocking both TIGIT/PVR and PD-1/PD-L1 interactions. In the MC38 murine tumor model, Gln(TrT) emerges as a pivotal modulator, promoting the intratumoral infiltration and functional competence of CD8+ T cells. Furthermore, whether used as a monotherapy or in conjunction with radiotherapy, Gln(TrT) substantially impedes MC38 tumor progression, significantly extending the survival of murine subjects.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Animales , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Receptores Inmunológicos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
8.
Sci China Life Sci ; 67(5): 996-1009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38324132

RESUMEN

The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8+ T cell-mediated cytotoxicity. Immune checkpoint blockade (ICB) could induce tumor ferroptosis through IFN-γ released by immune cells, indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth. However, the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet. In this study, the small molecule Hemin that could bind with TIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay. Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells. Hemin reinvigorated the function of CD8+ T cells to secrete IFN-γ and the elevated IFN-γ could synergize with Hemin to induce ferroptosis in tumor cells. Hemin inhibited tumor growth by boosting CD8+ T cell immune response and inducing ferroptosis in CT26 tumor model. More importantly, Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model. In summary, our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis, which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.


Asunto(s)
Ferroptosis , Hemina , Inmunoterapia , Receptores Inmunológicos , Hemina/farmacología , Receptores Inmunológicos/metabolismo , Animales , Humanos , Ferroptosis/efectos de los fármacos , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Simulación del Acoplamiento Molecular , Células Jurkat , Ratones Endogámicos C57BL , Inhibidores de Puntos de Control Inmunológico/farmacología , Sinergismo Farmacológico , Interferón gamma/metabolismo , Interferón gamma/inmunología , Receptores Virales/metabolismo , Ratones Endogámicos BALB C
9.
Cell Commun Signal ; 22(1): 77, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291457

RESUMEN

AXIN1, has been initially identified as a prominent antagonist within the WNT/ß-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/ß-catenin, Hippo, TGFß, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Ontología de Genes , Proteína Axina/genética , Proteína Axina/metabolismo , Vía de Señalización Wnt/genética , Fosforilación , Proteolisis , beta Catenina/metabolismo , Mamíferos/metabolismo
10.
J Control Release ; 367: 61-75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242210

RESUMEN

Pyroptosis, mediated by gasdermin proteins, has shown excellent efficacy in facilitating cancer immunotherapy. The strategies commonly used to induce pyroptosis suffer from a lack of tissue specificity, resulting in the nonselective activation of pyroptosis and consequent systemic toxicity. Moreover, pyroptosis activation usually depends on caspase, which can induce inflammation and metabolic disorders. In this study, inspired by the tumor-specific expression of SRY-box transcription factor 4 (Sox4) and matrix metalloproteinase 2 (MMP2), we constructed a doubly regulated plasmid, pGMD, that expresses a biomimetic gasdermin D (GSDMD) protein to induce the caspase-independent pyroptosis of tumor cells. To deliver pGMD to tumor cells, we used a hyaluronic acid (HA)-shelled calcium carbonate nanoplatform, H-CNP@pGMD, which effectively degrades in the acidic endosomal environment, releasing pGMD into the cytoplasm of tumor cells. Upon the initiation of Sox4, biomimetic GSDMD was expressed and cleaved by MMP2 to induce tumor-cell-specific pyroptosis. H-CNP@pGMD effectively inhibited tumor growth and induced strong immune memory effects, preventing tumor recurrence. We demonstrate that H-CNP@pGMD-induced biomimetic GSDMD expression and tumor-specific pyroptosis provide a novel approach to boost cancer immunotherapy.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Gasderminas , Biomimética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacología , Caspasas/metabolismo , Caspasas/farmacología , Neoplasias/terapia
11.
Acta Pharm Sin B ; 13(11): 4511-4522, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969728

RESUMEN

Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients. Here, we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells, especially myeloid derived suppressor cells (MDSCs) and CD8+ T cells. Then, peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique, and its mutant peptide VS3 was obtained by molecular docking based mutation. Peptide VS3 could bind VISTA with high affinity and block its interaction with ligand PSGL-1 under acidic condition, and elicit anti-tumor activity in vivo. The peptide DVS3-Pal was further designed by d-amino acid substitution and fatty acid modification, which exhibited strong proteolytic stability and significant anti-tumor activity through enhancing CD8+ T cell function and decreasing MDSCs infiltration. This is the first study to develop peptides to block VISTA/PSGL-1 interaction, which could act as promising candidates for cancer immunotherapy.

12.
Biochem Pharmacol ; 212: 115583, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148978

RESUMEN

PD-1/PD-L1 blockade has achieved substantial clinical results in cancer treatment. However, the expression of other immune checkpoints leads to resistance and hinders the efficacy of PD-1/PD-L1 blockade. T cell immunoglobulin and mucin domain 3 (TIM-3), a non-redundant immune checkpoint, synergizes with PD-1 to mediate T cell dysfunction in tumor microenvironment. Development of small molecules targeting TIM-3 is a promising strategy for cancer immunotherapy. Here, to identify small molecule inhibitors targeting TIM-3, the docking pocket in TIM-3 was analyzed by Molecular Operating Environment (MOE) and the Chemdiv compound database was screened. The small molecule SMI402 could bind to TIM-3 with high affinity and prevent the ligation of PtdSer, HMGB1, and CEACAM1. SMI402 reinvigorated T cell function in vitro. In the MC38-bearing mouse model, SMI402 inhibited tumor growth by increasing CD8+ T and natural killing (NK) cells infiltration at the tumor site, as well as restoring the function of CD8+ T and NK cells. In conclusions, the small molecule SMI402 shows promise as a leading compound which targets TIM-3 for cancer immunotherapy.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Neoplasias , Animales , Ratones , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
13.
Cancer Immunol Immunother ; 72(4): 985-1001, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36251028

RESUMEN

About 85% of patients with colorectal cancer (CRC) have the non-microsatellite instability-high (non-MSI-H) subtype, and many cannot benefit from immune checkpoint blockade. A potential reason for this is that most non-MSI-H colorectal cancers are immunologically "cold" due to poor CD8+ T cell infiltration. In the present study, we screened for potential cancer-testis antigens (CTAs) by comparing the bioinformatics of CD8+ T effector memory (Tem) cell infiltration between MSI-H and non-MSI-H CRC. Two ODF2-derived epitope peptides, P433 and P609, displayed immunogenicity and increased the proportion of CD8+ T effector memory (Tem) cells in vitro and in vivo. The adoptive transfer of peptide pool-induced CTLs inhibited tumor growth and enhanced CD8+ T cell infiltration in tumor-bearing NOD/SCID mice. The mechanistic study showed that knockdown of ODF2 in CRC cells promoted interleukin-15 expression, which facilitated CD8+ T cell proliferation. In conclusion, ODF2, a CTA, was negatively correlated with CD8+ T cell infiltration in "cold" non-MSI-H CRC and was selected based on the results of bioinformatics analyses. The corresponding HLA-A2 restricted epitope peptide induced antigen-specific CTLs. Immunotherapy targeting ODF2 could improve CTA infiltration via upregulating IL-15 in non-MSI-H CRC. This tumor antigen screening strategy could be exploited to develop therapeutic vaccines targeting non-MSI-H CRC.


Asunto(s)
Neoplasias Colorrectales , Linfocitos T Citotóxicos , Animales , Masculino , Ratones , Neoplasias Colorrectales/patología , Epítopos , Proteínas de Choque Térmico , Interleucina-15 , Ratones Endogámicos NOD , Ratones SCID , Péptidos , Testículo/patología , Vacunas de Subunidad , Vacunas contra el Cáncer
15.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36323433

RESUMEN

BACKGROUND: The development of cancer is largely dependent on the accumulation of somatic mutations, indicating the potential to develop cancer chemoprevention agents targeting mutation drivers. However, ideal cancer chemoprevention agents that can effectively inhibit the mutation drivers have not been identified yet. METHODS: The somatic mutation signatures and expression analyses of APOBEC3B were performed in patient with pan-cancer. The computer-aided screening and skeleton-based searching were performed to identify natural products that can inhibit the activity of APOBEC3B. 4-nitroquinoline-1-oxide (4-NQO)-induced spontaneous esophageal squamous cell carcinoma (ESCC) and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced spontaneous colon cancer mouse models were conducted to investigate the influences of APOBEC3B inhibitor on the prevention of somatic mutation accumulation and cancer progression. RESULTS: Here, we discovered that the cytidine deaminase APOBEC3B correlated somatic mutations were widely observed in a variety of cancers, and its overexpression indicated poor survival. SMC247 (3, 5-diiodotyrosine), as a source of kelp iodine without side effects, could strongly bind APOBEC3B (KD=65 nM) and effectively inhibit its deaminase activity (IC50=1.69 µM). Interestingly, 3, 5-diiodotyrosine could significantly reduce the clusters of mutations, prevent the precancerous lesion progression, and prolong the survival in 4-NQO-induced spontaneous ESCC and AOM/DSS-induced spontaneous colon cancer mouse models. Furthermore, 3, 5-diiodotyrosine could reduce colitis, increase the proportion and function of T lymphocytes via IL-15 in tumor microenvironment. The synergistic cancer prevention effects were observed when 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade. CONCLUSIONS: This is the first prove-of-concept study to elucidate that the natural product 3, 5-diiodotyrosine could prevent somatic mutation accumulation and cancer progression through inhibiting the enzymatic activity of APOBEC3B. In addition, 3, 5-diiodotyrosine could reduce the colitis and increase the infiltration and function of T lymphocytes via IL-15 in tumor microenvironment. 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade could elicit synergistic cancer prevention effects, indicating a novel strategy for both prevent the somatic mutation accumulation and the immune-suppressive microenvironment exacerbation.


Asunto(s)
Productos Biológicos , Colitis , Neoplasias del Colon , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Ratones , Azoximetano , Antígeno B7-H1/genética , Colitis/inducido químicamente , Diyodotirosina/genética , Interleucina-15/genética , Antígenos de Histocompatibilidad Menor/genética , Acumulación de Mutaciones , Receptor de Muerte Celular Programada 1/genética , Microambiente Tumoral
16.
J Clin Transl Hepatol ; 10(4): 577-588, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36062292

RESUMEN

Background and Aims: Iron overload can contribute to the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Hepcidin (Hamp), which is primarily synthesized in hepatocytes, is a key regulator of iron metabolism. However, the role of Hamp in NASH remains unclear. Therefore, we aimed to elucidate the role of Hamp in the pathophysiology of NASH. Methods: Male mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for 16 weeks to establish the mouse NASH model. A choline-supplemented amino acid-defined (CSAA) diet was used as the control diet. Recombinant adeno-associated virus genome 2 serotype 8 vector expressing Hamp (rAAV2/8-Hamp) or its negative control (rAAV2/8-NC) was administered intravenously at week 8 of either the CDAA or CSAA diet. Results: rAAV2/8-Hamp treatment markedly decreased liver weight and improved hepatic steatosis in the CDAA-fed mice, accompanied by changes in lipogenesis-related genes and adiponectin expression. Compared with the control group, rAAV2/8-Hamp therapy attenuated liver damage, with mice exhibiting reduced histological NAFLD inflammation and fibrosis, as well as lower levels of liver enzymes. Moreover, α-smooth muscle actin-positive activated hepatic stellate cells (HSCs) and CD68-postive macrophages increased in number in the CDAA-fed mice, which was reversed by rAAV2/8-Hamp treatment. Consistent with the in vivo findings, overexpression of Hamp increased adiponectin expression in hepatocytes and Hamp treatment inhibited HSC activation. Conclusions: Overexpression of Hamp using rAAV2/8-Hamp robustly attenuated liver steatohepatitis, inflammation, and fibrosis in an animal model of NASH, suggesting a potential therapeutic role for Hamp.

17.
Pharmacol Res ; 182: 106343, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798286

RESUMEN

Although the blockade of immune checkpoint PD-1/PD-L1 has achieved great success, the lack of tumor-infiltrating immune cells and PD-L1 expression in the tumor microenvironment results in a limited response in certain tumor types. Thus, rational and optimal combination strategies were urgently needed. The combination of PD-1/PD-L1 blockade and anti-angiogenic therapy has been reported to have great potential. Here, a chimeric peptide OGS was designed by conjugating the peptides OPBP-1 (8-12) and DA7R targeting PD-L1 and VEGFR2, respectively. OGS could bind to both human and mouse PD-L1 with high affinity and block the PD-1/PD-L1 interaction, and also inhibit the migration and tube formation of HUVEC cells in wound healing and tube formation assays. To further prolong the half-life of OGS, it was modified by coupling with peptide DSP which has a high binding affinity to both human serum albumin (HSA) and mouse serum albumin (MSA) to form the peptide DSPOGS. DSPOGS could not directly affect the viability, apoptosis, and cell cycle of tumor cells in vitro, while significantly inhibiting the tumor growth in the MC38 mouse model. DSPOGS could elicit a potent anti-tumor immune response and inhibit tumor angiogenesis, with the enhancement of tumor infiltrating CD8+ T cells and the IFN-γ secreting CD8+ T cells in the spleen and tumor-draining lymph node. Further, the combination of radiotherapy with DSPOGS could dramatically improve the therapeutic efficacy. Our study could provide a promising paradigm for the combination of immune checkpoint blockade, anti-angiogenesis, and radiotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Péptidos/farmacología , Péptidos/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
19.
Cell Death Dis ; 13(5): 501, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614059

RESUMEN

The antioxidant transcription factor NFE2L1 (also called Nrf1) acts as a core regulator of redox signaling and metabolism homeostasis, and thus, its dysfunction results in multiple systemic metabolic diseases. However, the molecular mechanism(s) by which NFE2L1 regulates glycose and lipid metabolism remains elusive. Here, we found that loss of NFE2L1 in human HepG2 cells led to a lethal phenotype upon glucose deprivation and NFE2L1 deficiency could affect the uptake of glucose. Further experiments revealed that glycosylation of NFE2L1 enabled it to sense the energy state. These results indicated that NFE2L1 can serve as a dual sensor and regulator of glucose homeostasis. The transcriptome, metabolome, and seahorse data further revealed that disruption of NFE2L1 could reprogram glucose metabolism to aggravate the Warburg effect in NFE2L1-silenced hepatoma cells, concomitant with mitochondrial damage. Co-expression and Co-immunoprecipitation experiments demonstrated that NFE2L1 could directly interact and inhibit AMPK. Collectively, NFE2L1 functioned as an energy sensor and negatively regulated AMPK signaling through directly interacting with AMPK. The novel NFE2L1/AMPK signaling pathway delineate the mechanism underlying of NFE2L1-related metabolic diseases and highlight the crosstalk between redox homeostasis and metabolism homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factor 1 Relacionado con NF-E2 , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Glucosa , Homeostasis , Factor 1 Relacionado con NF-E2/metabolismo , Transducción de Señal
20.
Acta Pharm Sin B ; 11(9): 2835-2849, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589400

RESUMEN

Tryptophan 2,3-dioxygnease 2 (TDO2) is specific for metabolizing tryptophan to kynurenine (KYN), which plays a critical role in mediating immune escape of cancer. Although accumulating evidence demonstrates that TDO2 overexpression is implicated in the development and progression of multiple cancers, its tumor-promoting role in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we observed that TDO2 was overexpressed in ESCC tissues and correlated significantly with lymph node metastasis, advanced clinical stage, and unfavorable prognosis. Functional experiments showed that TDO2 promoted tumor cell proliferation, migration, and colony formation, which could be prevented by inhibition of TDO2 and aryl hydrocarbon receptor (AHR). Further experimentation demonstrated that TDO2 could promote the tumor growth of KYSE150 tumor-bearing model, tumor burden of C57BL/6 mice with ESCC induced by 4-NQO, enhance the expression of phosphorylated AKT, with subsequent phosphorylation of GSK3ß, and polarization of M2 macrophages by upregulating interleukin-8 (IL-8) to accelerate tumor progression in the tumor microenvironment (TME). Collectively, our results discovered that TDO2 could upregulate IL-8 through AKT/GSK3ß to direct the polarization of M2 macrophages in ESCC, and suggested that TDO2 could represent as an attractive therapeutic target and prognostic marker to ESCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...