Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577930

RESUMEN

Emerging scientific evidence has suggested that the long non­coding (lnc)RNA differentiation antagonizing non­protein coding RNA (DANCR) serves a significant role in human tumorigenesis and cancer progression; however, the precise mechanism of its function in breast cancer remains to be fully understood. Therefore, the objective of the present study was to manipulate DANCR expression in MCF7 and MDA­MB­231 cells using lentiviral vectors to knock down or overexpress DANCR. This manipulation, alongside the analysis of bioinformatics data, was performed to investigate the potential mechanism underlying the role of DANCR in cancer. The mRNA and/or protein expression levels of DANCR, miR­34c­5p and E2F transcription factor 1 (E2F1) were assessed using reverse transcription­quantitative PCR and western blotting, respectively. The interactions between these molecules were validated using chromatin immunoprecipitation and dual­luciferase reporter assays. Additionally, fluorescence in situ hybridization was used to confirm the subcellular localization of DANCR. Cell proliferation, migration and invasion were determined using 5­ethynyl­2'­deoxyuridine, wound healing and Transwell assays, respectively. The results of the present study demonstrated that DANCR had a regulatory role as a competing endogenous RNA and upregulated the expression of E2F1 by sequestering miR­34c­5p in breast cancer cells. Furthermore, E2F1 promoted DANCR transcription by binding to its promoter in breast cancer cells. Notably, the DANCR/miR­34c­5p/E2F1 feedback loop enhanced cell proliferation, migration and invasion in breast cancer cells. Thus, these findings suggested that targeting DANCR may potentially provide a promising future therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Retroalimentación , Hibridación Fluorescente in Situ , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo
2.
Adv Mater ; : e2401221, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563723

RESUMEN

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

3.
Small ; : e2311055, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295001

RESUMEN

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+ -reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1 , and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

4.
Adv Mater ; 36(4): e2305190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640375

RESUMEN

New-fashioned electrode hosts for sodium-ion batteries (SIBs) are elaborately engineered to involve multifunctional active components that can synergistically conquer the critical issues of severe volume deformation and sluggish reaction kinetics of electrodes toward immensely enhanced battery performance. Herein, it is first reported that single-phase CoPS, a new metal phosphosulfide for SIBs, in the form of quantum dots, is successfully introduced into a leaf-shaped conductive carbon nanosheet, which can be further in situ anchored on a 3D interconnected branch-like N-doped carbon nanofiber (N-CNF) to construct a hierarchical branch-leaf-shaped CoPS@C@N-CNF architecture. Both double carbon decorations and ultrafine crystal of the CoPS in-this exquisite architecture hold many significant superiorities, such as favorable train-relaxation, fast interfacial ion-migration, multi-directional migration pathways, and sufficiently exposed Na+ -storage sites. In consequence, the CoPS@C@N-CNF affords remarkable long-cycle durability over 10 000 cycles at 20.0 A g-1 and superior rate capability. Meanwhile, the CoPS@C@N-CNF-based sodium-ion full cell renders the potential proof-of-feasibility for practical applications in consideration of its high durability over a long-term cyclic lifespan with remarkable reversible capacity. Moreover, the phase transformation mechanism of the CoPS@C@N-CNF and fundamental springhead of the enhanced performance are disclosed by in situ X-ray diffraction, ex situ high-resolution TEM, and theoretical calculations.

5.
J Cancer Res Clin Oncol ; 149(15): 14271-14282, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37561208

RESUMEN

INTRODUCTION: The aim of this study was to investigate the role of thymidine kinase 1 (TK1) levels in hepatocellular carcinoma (HCC) prognosis and to develop a nomogram for predicting HCC prognosis. METHOD: In this study, 1066 HCC patients were enrolled between August 2018 and April 2022. TK1 levels were measured within one week before enrollment, and the relationship with HCC prognosis was evaluated. Next, all patients were randomly assigned to the training set (70%, n = 746) and the validation set (30%, n = 320). We used multivariate Cox analysis to find independent prognostic factors in the training set to construct a nomogram. The predictive power of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The optimal critical value of TK1 was determined as 2.35 U/L using X-tile software. RESULT: Before and after propensity score matching (PSM), the median overall survival (mOS) of the low-TK1 group (< 2.35 U/L) remained significantly longer than that of the high-TK1 group (≥ 2.35 U/L) (48.1 vs 16.5 months, p < 0.001; 75.7 vs 19.8 months, p = 0.001). Moreover, multivariate Cox analysis showed that the low TK1 level was an independent positive prognostic indicator. Additionally, the area under the ROC curve for predicting the 1-year, 2-year, and 3-year survival rates was 0.770, 0.758, and 0.805, respectively. CONCLUSIONS: TK1 could serve as a prognostic marker for HCC. In addition, the nomogram showed good predictive capability for HCC prognosis.

6.
J Hepatocell Carcinoma ; 10: 1009-1017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405321

RESUMEN

Background: TACE and TACE with or without targeted immunotherapy are crucial comprehensive therapies for middle and advanced HCC. However, a reasonable and concise score is needed to evaluate TACE and TACE combined with systemic therapy in HCC treatment. Methods: The HCC patients were grouped into two groups: training group (n = 778) (treated with TACE) and verification group (n = 333). The predictive value of baseline variables on overall survival was analyzed using COX model, and easy-to-use ALR (AST and Lym-R) scores. The best cut-off value of AST and Lym-R were determined using X-Tile software based on total survival time (OS) and further verified via a restricted three-spline method. Meanwhile, the score was further verified using two independent valid sets: TACE combined with targeted therapy and TACE with targeted combined immunotherapy. Results: In multivariate analysis, baseline serum AST>57.1 (p < 0.001) and Lym-R≤21.7 (p < 0.001) were identified as independent prognostic factors. The OS of patients in the TACE pooled cohort with 0, 1, and 2 scores were 28.1 (95% CI 24-33.8) months, 15 (95% CI 12.4-18.6) months, and 7.4 (95% CI 5.7-9.1) months, respectively. The time-varying ROC curve based on ALR showed that the AUC values for predicting 1, -2-and 3-year OS were 0.698, 0.718, and 0.636, respectively. These results are confirmed in two independent valid sets of TACE combined with targeted therapy and TACE with targeted combined immunotherapy. And we established a nomogram after COX regression to predict the 1 -, 2- and 3-year survival time. Conclusion: Our study confirmed that ALR score can predict the prognosis of HCC treated with TACE or TACE combined with systemic therapy.

7.
Econ Lett ; 224: 110999, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36778078

RESUMEN

This study investigates the relationship between political connections and firm financial performance during the COVID-19 pandemic. Using a difference-in-differences methodology, we found that politically connected enterprises paid more taxes, employed more employees, and suffered financial performance. This study enriches the literature on the impact of COVID-19 on enterprises and provides suggestions for regulators.

8.
Mar Pollut Bull ; 188: 114668, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736262

RESUMEN

Cladophora glomerata (C. glomerata) is a typical macroalgae inducing green tide and affecting economic benefits in aquaculture. A high-efficiency, environment friendly compound essential oils (CEOs) was provided to control C. glomerata blooms. The inhibition effect of CEOs against C. glomerata was assessed through the growth, cellular morphology and the physiological and biochemical indexes of C. glomerata. Results of the Chl-a content indicated that 300 µL/L CEOs could significantly inhibited the growth (85 % ± 2 %) of C. glomerata on the 11th day; the damage degree of algal thallus can be observed based on the results of cell morphology; the results of the physiological and biochemical indicators presented the decreased photosynthetic capacity, the dysfunction of antioxidant system and the algal apoptosis gene caspase- 8, 9, 3 activated when C. glomerata exposed to CEOs. This study elucidated the effect and mechanism of CEOs control the green tide induced by C. glomerata.


Asunto(s)
Chlorophyta , Aceites Volátiles , Algas Marinas , Aceites Volátiles/farmacología , Chlorophyta/química , Antioxidantes , Fotosíntesis
9.
Int J Parasitol Parasites Wildl ; 18: 249-259, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35800109

RESUMEN

Platygaster robiniae is economically important as a highly specific parasitoid of the invasive pest Obolodiplosis robiniae which was introduced into the Euro-Asia region in the last decade. Despite being a critical and specific parasitoid of the invasive pest O. robiniae and its use as an effective biocontrol agent, the absence of sequence information from P. robiniae have limited its genetic applications for pest management in forests. Mitochondrial (mt) genomes generally contain abundant nucleotide information and thus are helpful for understanding species history. Here, we sequenced the complete mt genome of P. robiniae using next generation sequencing, and annotated 13 protein-coding, 22 tRNA, and 2 rRNA genes and a 702 bp noncoding region. Comparative analysis indicated that this mt genome has a normal A + T content and codons use, however possessed both the expected and unique rearrangements. Ten tRNAs at four gene blocks COII-ATP8, COIII-ND3, ND3-ND5 and the A + T-rich region-ND2 were rearranged, including gene shuffles, transpositions and inversions. Notably, two genes tRNA Ser(UCN) and tRNA Leu(CUN) had undergone long-range inversions, which is the first record of this rearrangement type in the superfamily Platygastroidea. The D-loops of both tRNA Ile and tRNA Leu(CUN) were absent from the tRNA secondary structure, which has not been reported from hymenopteran previously. Phylogenetic analysis based with the maximum likelihood and Bayesian methods showed that P. robiniae grouped with other species of Platygastridae, and that the superfamily Platygastridea is sister to the other Proctotrupomorpha superfamilies. Our tree strongly supports the monophyly of the five superfamilies of Proctotrupomorpha. This study discovered some unique characters of P. robiniae, and contributes to our understanding of genome rearrangements in the order Hymenoptera.

10.
Nanoscale ; 13(35): 14705-14712, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533166

RESUMEN

Three-dimensional catalysts have attracted great attention in the field of the hydrogen evolution reaction (HER).However, great challenges remain in structural innovation and performance enhancement. Herein we designed and tailored a unique three-dimensional cross-linked neural network-like CoP-based composite, that is, carbon nanofibers inserted in CoP/NC polyhedra derived from in situ self-assembled bacterial cellulose (BC) wired ZIF-67 polyhedra via high-temperature carbonization and subsequent phosphorization. The obtained integrated catalyst (3-D CNF@CoP/NC) consists of CoP/NC polyhedra with abundant active sites as the "neurons" and carbon nanofibers as the "axons", and displayed remarkable activity with an overpotential of 64.5 mV and 105.6 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH respectively and good stability with negligible current change after 80 h of chronoamperometric measurement or 4000 CV cycles. This work offers a high-performance HER catalyst and paves a new way for the rational engineering of unique 3-D interconnected hierarchical porous networks featuring ultrafast charge transfer and mass transport.

11.
ACS Appl Mater Interfaces ; 13(34): 40942-40952, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415735

RESUMEN

Designing metal sulfides with unique configurations and exploring their electrochemical activities for hydrogen peroxide (H2O2) and hydrazine (N2H4) is challenging and desirable for various fields. Herein, hollow microflower-like CuS@C hybrids were successfully assembled and further exploited as a versatile electrochemical sensing platform for H2O2 reduction and N2H4 oxidation, of which the elaborate strategies make the perfect formation of hollow architecture, providing considerable electrocatalytic sites and fast charge transfer rate, while the appropriate introduction polydopamine-derived carbon skeleton facilitates the electronic conductivity and boosts structural robustness, thus generating wide linear range (0.05-14 and 0.01-10 mM), low detection limit (0.22 µM and 0.07 µM), and a rather low overpotential (-0.15 and -0.05 V) toward H2O2 and N2H4, as well as good selectivity, excellent reproducibility, and admirable long-term stability. It should be highlighted that the operating potentials can compare favorably with those of some reported H2O2 and N2H4 sensors based on noble metals. In addition, good recoveries and acceptable relative standard deviations (RSDs) attained in serum and water samples fully verify the accuracy and anti-interference capability of our proposed sensor systems. These results not only elucidate an effective structural nanoengineering strategy for electroanalytical science but also advance the rational utilization of H2O2 and N2H4 in practicability.

12.
Nanoscale ; 12(43): 22161-22172, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33135720

RESUMEN

Metal chalcogenides with structural pulverization/degradation and intrinsic low electrical conductivity trigger the challenging issues of serious capacity fading and inferior rate capability upon repeated de-/sodiation cycling. Multiple electroactive heterostructures can integrate the inherent advantages of a strong synergistic coupling effect to improve their electrochemical Na+-storage behavior and structural durability, showing robust mechanical features, fast Na+ immigration and abundant active insertion sites at intriguing heterointerfaces. Hence, a series-wound architecture of metal-organic framework (MOF)-derived heterogeneous (CoFe)Se2 hollow nanocubes confined into a one-dimension carbon nanofiber skeleton ((CoFe)Se2@CNS) was successfully developed via a template-assisted liquid phase anion exchange followed by electrospinning and conventional selenization treatment. When examined as an anode for sodium ion batteries, the (CoFe)Se2@CNS electrode exhibits remarkably enhanced electrochemical Na+-storage performance delivering a high sodiation capacity as high as 213.9 mA h g-1 after 3650 cycles at 5 A g-1 with a capacity degradation rate of only 0.0047% per cycle; specifically, it shows tremendous rate performance and ultrastable cycling durability of 194.7 mA h g-1 at a high rate of 8 A g-1 after 5630 cycles. This work can shed light on a fundamental approach for designing heterostructures of multiple electroactive components toward high-performance alkali metal ion batteries.

13.
J Chem Inf Model ; 60(12): 5870-5872, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33058674

RESUMEN

Modern scientometric techniques, applied at scale, can provide valuable information that complements qualitative investigation of the accumulation of knowledge in a field. We discuss a trio of articles from computational chemistry selected from an analysis of 181 million tri-cited articles.


Asunto(s)
Bibliometría , Quimioinformática
14.
Nanotechnology ; 31(48): 485701, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-32931462

RESUMEN

The electronic structures of two dimensional (2D) CdS/ZnO heterostructure (CdZnHT) consisting of CdS singlelayer (SL) and ZnO SL are explored based on hybrid density functional calculation. The negative interface formation energies suggest the formation of CdZnHT is exothermic. The bandgap of CdZnHT is favorable for absorbing visible light, and the decent band edge position makes it thermodynamically feasible for spontaneous generation of oxygen and hydrogen. The formed electric field across the interface induced by charge transfer will reduce photogenerated carrier recombination and promote carrier migration. Particularly, CdZnHT is a type-II heterostructure. Oxygen generation takes place at ZnO layer and hydrogen production occurs at CdS layer, which will also promote the effective separation and migration of phogogenerated carriers and enhance photocatalytic performance. These findings suggest that 2D CdZnHTs are possible candidates as water-splitting photocatalysts.

15.
Front Res Metr Anal ; 5: 577131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33870050

RESUMEN

A Sleeping Beauty is a publication that is apparently unrecognized by citation for some period of time before experiencing a burst of recognition. Various reasons, including resistance to new ideas, have been attributed to such delayed recognition. We study this phenomenon in the special case of co-citations, which represent new ideas generated through the combination of existing ones. Using relatively stringent selection criteria derived from the work of others, we analyze a very large dataset of over 940 million unique co-cited article pairs, and identify 1,196 cases of delayed co-citations. We further classify these 1,196 cases with respect to amplitude, rate of citation, and disciplinary origin.

16.
J Phys Condens Matter ; 31(46): 465002, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31425148

RESUMEN

Photocatalytic water-splitting for hydrogen generation is a promising way to solve the energy crisis, yet the design of efficient photocatalysts is still a challenge. By utilization of first principles calculations, we predict the photocatalytic properties of monolayer boron phosphide (BP) based BP/XY2 (X = Mo, W; Y = S, Se) composites of different rotated configurations. Our results suggest that the BP/XY2 composites can be stably formed, and the narrowed bandgaps ensure these composites are suitable for absorbing visible light. The bandgaps and band edge positions are slightly affected by the rotation angles. The BP/MoS2, BP/MoSe2, and BP/WSe2 are type II heterostructures. Furthermore, the transferred charge from BP to XY2 layers leads to the formation of electric fields, which efficiently separate the photoinduced carriers. The band alignments of BP/MoS2, BP/MoS2, BP/MoSe2, and BP/WSe2 satisfy the requirements of overall water-splitting within the pH scope of 3.6-7.9, 6.8-7.9, 4.0-8.0, and 8.7-8.8. This work will provide valuable insight for designing efficient water-splitting photocatalysts.

17.
Nanoscale Res Lett ; 14(1): 121, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30941603

RESUMEN

Bi3.15Nd0.85Ti2.99Mn0.01O12 (BNTM) thin films with (200)-orientations, (117)-orientations, and mixed-orientations were prepared by sol-gel methods. The influence of orientations on polarization fatigue behaviors of BNTM thin films were systematically investigated at both low and elevated temperatures. It was found that the changed trends of the polarization fatigue of (200)-oriented and (117)-oriented BNTM thin films at elevated temperatures were opposite. The fatigue properties become exacerbated for the (200)-oriented ones and become improved for the (117)-oriented ones, while the reduction of remanent polarization first decreases and then increases for the mixed-oriented ones. It can be assumed that the different roles played by domain walls and interface layer with increasing T in these thin films have caused such differences, which was certified by the lower activation energies (0.12-0.13 eV) of (200)-oriented BNTM thin films compared to those of BNTM thin films (0.17-0.31 eV) with other orientations through the temperature-dependent impedance spectra analysis. With the aid of piezoresponse force microscopy (PFM), the non-neutral tail-to-tail or head-to-head polarization configurations with greater probabilities for (117)-oriented and mixed-oriented thin films were found, while a majority of the neutral head-to-tail polarization configurations can be observed for (200)-oriented ones.

18.
Chem Commun (Camb) ; 54(74): 10507-10510, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30167610

RESUMEN

Hollow microflower-shaped CoSe2 particles were successfully constructed and further evaluated as an anode material for sodium-ion batteries. It yielded a large discharge capacity of 220 mA h g-1 and ultralong cycle life of 1690 cycles at 1 A g-1. This ultralong cycle life can be attributed to a surface-controlled pseudocapacitive behavior and resulting rapid electron/sodium ion transport.

19.
PeerJ ; 6: e5013, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967722

RESUMEN

Rongcheng Bay is a coastal bay of the Northern Yellow Sea, China. To investigate and monitor the fish resources in Rongcheng Bay, 187 specimens from 41 different species belonging to 28 families in nine orders were DNA-barcoded using the mitochondrial cytochrome c oxidase subunit I gene (COI). Most of the fish species could be discriminated using this COI sequence with the exception of Cynoglossus joyneri and Cynoglossus lighti. The average GC% content of the 41 fish species was 47.3%. The average Kimura 2-parameter genetic distances within the species, genera, families, and orders were 0.21%, 5.28%, 21.30%, and 23.63%, respectively. Our results confirmed that the use of combined morphological and DNA barcoding identification methods facilitated fish species identification in Rongcheng Bay, and also established a reliable DNA barcode reference library for these fish. DNA barcodes will contribute to future efforts to achieve better monitoring, conservation, and management of fisheries in this area.

20.
Chemosphere ; 191: 458-466, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29055267

RESUMEN

The isolation of fulvic acid (FA) fractions with relatively homogeneity is a key to reveal the binding mechanisms between FA and heavy metals. In this work, nine FA fractions were obtained using sequential alkali extraction procedure and nature differences of the extracted FA fractions were considered as explanatory factors for binding characteristics of Cu2+. The results indicate that the contents of carboxyl and phenolic groups decrease with increasing extractions along with an opposite trend for the content of nitrogen-containing groups. The fitted results of ligand binding and bi-Langmuir models indicate that the binding sites for Cu2+ were mainly provided by carboxyl and phenolic groups, which explained the higher sorption capacity and binding affinity of earlier extracted FAs due to its higher contents of carboxyl and phenolic groups. Furthermore, the systemic characterization of FA fractions before and after adsorption indicate the nitrogen-containing groups were gradually showing their contribution in binding Cu2+ with increasing extractions. This work is very helpful to insight the environmental effects of natural organic matter and the behavior of heavy metals in natural environment.


Asunto(s)
Benzopiranos/química , Cobre/química , Monitoreo del Ambiente , Adsorción , Benzopiranos/análisis , Fraccionamiento Químico , Metales Pesados/química , Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...