Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 348: 123883, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548154

RESUMEN

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Humanos , Retardadores de Llama/metabolismo , Triazinas/análisis , Sistema Enzimático del Citocromo P-450/metabolismo , Biotransformación , Oxidación-Reducción
2.
ACS Appl Mater Interfaces ; 16(11): 14072-14081, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442356

RESUMEN

Conventional luminescent solar concentrators (LSCs) usually only have the ability to absorb solar energy and convert it to electricity but are not able to regulate the transmitted light. Herein, a multistate thermoresponsive smart window (SW) based on LSC has been fabricated, in which the stimuli-responsive host layer consists of polydimethylsiloxane (PDMS) and ethylene glycol solution (EGS) microdroplets stacking with LSC layer-based on near-infrared (NIR) CuInSe2-xSx/ZnS core/shell quantum dots (QDs) and PDMS matrix. As-synthesized CISSe/ZnS QDs with broad NIR absorption in LSC exhibit controllable emission spectra over 833-1088 nm and high photoluminescence (PL) quantum yield from 45 to 83%. Coupling with Si solar cells as a reference, optimized LSC-SW devices with dimensions of 5 × 5 × 0.9 cm3 exhibit higher power conversion efficiency (PCE) of 1.19-1.36% with increased temperature from 0 to 50 °C than those of sole LSC and SW devices. The corresponding visible light transmissions are regulated from 75.1 to 48.1% accordingly. The improvement of PCEs in an opaque state is mainly due to enhanced absorption of QDs originating from rescattered photons from the EGS/PDMS layer, leading to more emitted photons reaching photovoltaics. This work is expected to bring up new opportunities for applications in greenhouses, building facades, and energy-efficient smart windows.

3.
Gene ; 897: 147991, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972697

RESUMEN

Hepatoblastoma (HB) is an uncommon malignant liver cancer primarily affecting infants and children, characterized by the presence of tissue that resembling fetal hepatocytes, mature liver cells or bile duct cells. The primary symptom in affected children is abdominal lumps. HB constitutes approximately 28% of all liver tumors and two-thirds of liver malignancies in the pediatric and adolescent population. Despite its high prevalence, the underlying mechanism of HB pathogenesis remain largely unknown. To reveal the genetic alternations associated with HB, we conducted a comprehensive genomic study using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques on five HB patients. We aimed to use WGS to identify somatic variant loci associated with HB, including single nucleotide polymorphisms (SNPs), insertions and deletions (Indels), and copy number variations (CNVs). Notably, we found deleterious mutation in CTNNB1, AXIN2 and PARP1, previously implicated in HB. In addition, we discovered multiple novel genes potentially associated with HB, including BRCA2 and GPC3 which require further functional validation to reveal their contributions to HB development. Furthermore, the American College of Medical Genetics and Genomics (ACMG) analysis identified the ABCC2 gene was the pathogenic gene as a potential risk gene linked with HB. To study the gene expression patterns in HB, we performed RNA-seq analysis and qPCR validation to reveal differential expression of four candidate genes (IGF1R, METTL1, AXIN2 and TP53) in tumors compared to nonneoplastic liver tissue in HB patients (P-Val < 0.01). These findings shed lights on the molecular mechanisms underlying HB development and facilitate to advance future personalized diagnosis and therapeutic interventions of HB.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Lactante , Adolescente , Humanos , Niño , Hepatoblastoma/genética , Variaciones en el Número de Copia de ADN , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Secuenciación Completa del Genoma , Análisis de Secuencia de ARN , Glipicanos/genética
4.
Nanoscale ; 16(1): 188-194, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38018877

RESUMEN

Semi-transparent large-area luminescent solar concentrators (LSCs) have been considered an essential part of zero-energy or low-energy consuming buildings in the future. Inorganic colloidal quantum dots (QDs) are promising candidates for LSCs due to the advantages of a tunable bandgap, engineered large Stokes shift, and relatively high photoluminescence (PL) quantum yield. However, LSCs that are fabricated using colloidal quantum dots exhibited an inferior stability under long-term illumination, demanding great efforts to explore the highly stable LSCs. Herein, we fabricated large-area (∼100 cm2) tandem LSCs based on highly stable carbon dots (CDs) and highly luminescent near-infrared emitting CuInSe2-xSx/ZnS (CuInSeS/ZnS) QDs. Coupled with a Si diode as a reference, the power conversion efficiency of the corresponding tandem (dimensions: 10 × 10 × 0.5 cm3) and single LSCs (dimensions: 10 × 10 × 0.3 cm3) based on CuInSeS/ZnS QDs under one sun illumination are 0.46% and 0.5%, respectively. For single CuInSeS/ZnS QD based LSCs at a low concentration (0.039 wt%), external and internal quantum efficiencies reach up to 2.87% and 36.37%, respectively. After UV illumination for 8 h, bottom LSCs based on CuInSeS/ZnS QDs retain 93.22% of the initial PL emission, which is higher than that of LSCs (∼80%) without the CD protection. The highly efficient and stable tandem LSCs employing green CDs and NIR CuInSeS/ZnS QDs as PL emitters pave the way for the realization of large area building-integrated photovoltaic (BIPV) devices.

5.
Carcinogenesis ; 44(10-11): 726-740, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37747815

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has been found to have a high mortality rate. Despite continuous efforts, current histopathological classification is insufficient to guide individualized therapies of PDA. We first define the molecular subtypes of PDA (MSOP) based on a meta-cohort of 845 samples from 11 PDA datasets. We then performed functional analyses involving immunity, fibrosis and metabolism. We recognized six molecular subtypes with different survival statistics and molecular composition. The squamous basal-like (SBL) subtype had a poor prognosis and high infiltration of ENO1+ (Enolase 1)/ADM+ (Adrenomedullin) cancer-associated fibroblasts (CAFs). The immune mesenchymal-like (IML) subtype and the normal mesenchymal-like (NML) subtype were characterized by genes associated with extracellular matrix (ECM) activities and immune responses, having favorable prognoses. IML was featured by elevated exhausted immune signaling and inflammatory CAFs infiltration, whereas NML was featured with myofibroblastic CAFs infiltration. The exocrine-like (EL) subtype was high in exocrine signals, while the pure classical-like (PCL) subtype lacked immunocytes infiltration. The quiescent-like (QL) subtype had diminished metabolic signaling and high infiltration of NK cells. SBL, IML and NML were enriched in innate anti-PD-1 resistance signatures. In sum, this MSOP depicts a vivid cell-to-molecular atlas of the tumor microenvironment of PDA and might facilitate to design a precise combination of therapies that target immunity, metabolism and stroma.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Transducción de Señal , Microambiente Tumoral/genética
6.
Small ; 19(50): e2304377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649212

RESUMEN

Solid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX3 (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein,  a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX3 NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported. Original morphology of the exchanged NCs is well-preserved for all samples. Complete anion exchange from Br- to Cl- or I- is successfully achieved in CsPbX3 NCs within ≈20 min through possible vacancies-assisted ion exchange mechanism, under ambient conditions and vice versa. Particularly, Br- -exchanged CsPbCl3 and CsPbI3 NCs exhibit improved optical properties. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of the resulted CsPbX3 NCs, an effective dual-mode information storage-reading application is demonstrated.  It is believed that this method can open a new avenue for the synthesis of other direct-synthesis challenging quantum-confined perovskite NCs/nanoplates/nanodisks or CsSnX3 NCs/thin film and provide an opportunity for advanced information storage compatible for practical applications.

7.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298589

RESUMEN

Alfalfa (Medicago sativa) is an important leguminous forage, known as the "The Queen of Forages". Abiotic stress seriously limits the growth and development of alfalfa, and improving the yield and quality has become an important research area. However, little is known about the Msr (methionine sulfoxide reductase) gene family in alfalfa. In this study, 15 Msr genes were identified through examining the genome of the alfalfa "Xinjiang DaYe". The MsMsr genes differ in gene structure and conserved protein motifs. Many cis-acting regulatory elements related to the stress response were found in the promoter regions of these genes. In addition, a transcriptional analysis and qRT-PCR (quantitative reverse transcription PCR) showed that MsMsr genes show expression changes in response to abiotic stress in various tissues. Overall, our results suggest that MsMsr genes play an important role in the response to abiotic stress for alfalfa.


Asunto(s)
Medicago sativa , Estrés Fisiológico , Estrés Fisiológico/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
8.
RSC Adv ; 13(25): 17315-17323, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37304768

RESUMEN

The development of low-cost and high-durability bifunctional electrocatalysts is of considerable importance for overall water splitting (OWS). This work reports the controlled synthesis of nickel-iridium alloy derivative nanochain array electrodes (NiIrx NCs) with fully exposed active sites that facilitated mass transfer for efficient OWS. The nanochains have a self-supported three-dimensional core-shell structure, composed of a metallic NiIrx core and a thin (5-10 nm) amorphous (hydr)oxide film as the shell (e.g., IrO2/NiIrx and Ni(OH)2/NiIrx). Interestingly, NiIrx NCs have bifunctional properties. Particularly, the oxygen evolution reaction (OER) current density (electrode geometrical area) of NiIr1 NCs is four times higher than that of IrO2 at 1.6 V vs. RHE. Meanwhile, its hydrogen evolution reaction (HER) overpotential at 10 mA cm-2 (η10 = 63 mV) is comparable to that of 10 wt% Pt/C. These performances may originate from the interfacial effect between the surface (hydr)oxide shell and metallic NiIrx core, which facilitates the charge transfer, along with the synergistic effect between Ni2+ and Ir4+ in the (hydr)oxide shell. Furthermore, NiIr1 NCs exhibits excellent OER durability (100 h @ 200 mA cm-2) and OWS durability (100 h @ 500 mA cm-2) with the nanochain array structure well preserved. This work provides a promising route for developing effective bifunctional electrocatalysts for OWS applications.

9.
Environ Int ; 175: 107932, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37116426

RESUMEN

Research on the environmental occurrence of long-chain chlorinated paraffins (LCCPs) in ambient fine particulate matter (PM2.5) is still scarce. In the present study, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs) and LCCPs were simultaneously quantified and profiled in PM2.5 samples collected from 96 primary or secondary schools in the Pearl River Delta of South China. SCCPs, MCCPs and LCCPs were detected in higher than 90% samples with concentrations in the range of 0.832-109, 1.02-110, and 0.173-17.4 ng/m3, respectively. The dominant congener groups of SCCPs, MCCPs and LCCPs were C13Cl6-8, C14Cl7-8, and C18Cl7-9, respectively. The concentrations of SCCPs and MCCPs were higher in summer than in winter, while an opposite seasonal trend was observed for LCCPs. Principal components analysis showed there were seasonal variations in the congener group patterns with C13Cl6-7 and C14Cl7 more abundant in summer than in winter. Concentrations of CPs also exhibited slight spatial variations. Exposure risk assessment based on different age groups suggested exposure to PM2.5-associated CPs would not pose significant health risk. The present study expands the existing knowledge of CPs contamination in atmospheric environment.


Asunto(s)
Hidrocarburos Clorados , Parafina , Parafina/análisis , Ríos , Hidrocarburos Clorados/análisis , Monitoreo del Ambiente , Material Particulado/análisis , China
10.
Chemosphere ; 311(Pt 1): 136920, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36273606

RESUMEN

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified as the strong endocrine disrupting chemicals to humans, which show structural similarity with endogenous thyroid hormones (THs) and thus disrupt the functioning of THs through competitive binding with TH receptors (TRs). Although previous studies have reported the hormone activities of some OH-PBDEs on TH receptor ß (TRß), the interaction mechanism remains unclear. Furthermore, hydroxyl dissociation of OH-PBDEs may alter their TR disrupting activities, which has not yet been investigated in depth. In this work, we selected 18 OH-PBDEs with neutral and anionic forms and performed molecular dynamics (MD) simulations to estimate their binding interactions with the ligand binding domain (LBD) of TRß. The results demonstrate that most of OH-PBDEs have stronger binding affinities to TRß-LBD than their anionic counterparts, and the hydroxyl dissociation of ligands differentiate the major driving force for their binding. More Br atoms in OH-PBDEs can result in stronger binding potential with TRß-LBD. Moreover, 5 hydrophobic residues, including Met313, Leu330, Ile276, Leu346, and Phe272, are identified to have important contributions to bind OH-PBDEs. These results clarify the binding mechanism of OH(O-)-PBDEs to TRß-LBD at the molecular level, which can provide a solid theoretical basis for accurate assessment of TH disrupting effects of these chemicals.


Asunto(s)
Éteres Difenilos Halogenados , Simulación de Dinámica Molecular , Humanos , Éteres Difenilos Halogenados/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Unión Proteica/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Hidroxilación
11.
J Pharm Anal ; 12(5): 783-790, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36320596

RESUMEN

Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography. In this study, a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate (SBVI) with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system. Notably, the duration for the preparation of this novel monolith was as little as 5 min, which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization. Moreover, these monoliths showed good morphology, permeability, porosity (62.4%), mechanical strength (over 15 MPa), column efficiency (51,230 plates/m), and reproducibility (relative standard deviations for all analytes were lower than 4.6%). Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith. In particular, the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption. These excellent features seem to favor its application in bioanalysis. Therefore, the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples. In this study, we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.

12.
Molecules ; 27(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566150

RESUMEN

Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites.


Asunto(s)
Retardadores de Llama , Biotransformación , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Humanos , Organofosfatos , Compuestos Organofosforados , Fosfatos
13.
Environ Sci Pollut Res Int ; 29(31): 46977-46990, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35175529

RESUMEN

Microbial indicators are often used to monitor microbial safety of aquatic environments. However, information regarding the correlation between microbial indicators and ecotoxicological factors such as potential pathogens and antibiotic resistance genes (ARGs) in anthropogenically impacted waters remains highly limited. Here, we investigated the bacterial community composition, potential pathogens, ARGs diversity, ARG hosts, and horizontal gene transfer (HGT) potential in urban river and wastewater samples from Chaohu Lake Basin using 16S rRNA and metagenomic sequencing. The composition of the microbial community and potential pathogens differed significantly in wastewater and river water samples, and the total relative abundance of fecal indicator bacteria was positively correlated with the total relative abundance of potential pathogens (p < 0.001 and Pearson's r = 0.758). Network analysis indicated that partial ARG subtypes such as dfrE, sul2, and PmrE were significantly correlated with indicator bacteria (p < 0.05 and Pearson's r > 0.6). Notably, Klebsiella was the indicator bacteria significantly correlated with 4 potential pathogens and 14 ARG subtypes. ARGs coexisting with mobile gene elements were mainly found in Thauera, Pseudomonas, Escherichia, and Acinetobacter. Next-generation sequencing (NGS) can be used to conduct preliminary surveys of environmental samples to access potential health risks, thereby facilitating water resources management.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/farmacología , Bacterias , Farmacorresistencia Microbiana/genética , Genes Bacterianos , ARN Ribosómico 16S , Agua
14.
Front Pharmacol ; 13: 1078464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618913

RESUMEN

Background: Accumulating evidence shows that DNA methylation plays a role in antipsychotic response. However, the mechanisms by which DNA methylation changes are associated with antipsychotic responses remain largely unknown. Methods: We performed a methylome-wide association study (MWAS) to evaluate the association between DNA methylation and the response to risperidone in schizophrenia. Genomic DNA methylation patterns were assessed using the Agilent Human DNA Methylation Microarray. Results: We identified numerous differentially methylated positions (DMPs) and regions (DMRs) associated with antipsychotic response. CYP46A1, SPATS2, and ATP6V1E1 had the most significant DMPs, with p values of 2.50 × 10-6, 3.53 × 10-6, and 5.71 × 10-6, respectively. The top-ranked DMR was located on chromosome 7, corresponding to the PTPRN2 gene with a Sidák-corrected p-value of 9.04 × 10-13. Additionally, a significant enrichment of synaptic function and neurotransmitters was found in the differentially methylated genes after gene ontology and pathway analysis. Conclusion: The identified DMP- and DMR-overlapping genes associated with antipsychotic response are related to synaptic function and neurotransmitters. These findings may improve understanding of the mechanisms underlying antipsychotic response and guide the choice of antipsychotic in schizophrenia.

15.
Sci Rep ; 11(1): 23941, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907239

RESUMEN

Iron-sulfur clusters are essential cofactors found in all kingdoms of life and play essential roles in fundamental processes, including but not limited to respiration, photosynthesis, and nitrogen fixation. The chemistry of iron-sulfur clusters makes them ideal for sensing various redox environmental signals, while the physics of iron-sulfur clusters and its host proteins have been long overlooked. One such protein, MagR, has been proposed as a putative animal magnetoreceptor. It forms a rod-like complex with cryptochromes (Cry) and possesses intrinsic magnetic moment. However, the magnetism modulation of MagR remains unknown. Here in this study, iron-sulfur cluster binding in MagR has been characterized. Three conserved cysteines of MagR play different roles in iron-sulfur cluster binding. Two forms of iron-sulfur clusters binding have been identified in pigeon MagR and showed different magnetic properties: [3Fe-4S]-MagR appears to be superparamagnetic and has saturation magnetization at 5 K but [2Fe-2S]-MagR is paramagnetic. While at 300 K, [2Fe-2S]-MagR is diamagnetic but [3Fe-4S]-MagR is paramagnetic. Together, the different types of iron-sulfur cluster binding in MagR attribute distinguished magnetic properties, which may provide a fascinating mechanism for animals to modulate the sensitivity in magnetic sensing.

16.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884615

RESUMEN

Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1-3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Inactivación Metabólica , Preparaciones Farmacéuticas/metabolismo , Xenobióticos/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Humanos , Tasa de Depuración Metabólica , Polimorfismo Genético
17.
J Chromatogr A ; 1647: 462147, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33957347

RESUMEN

Drug-induced phospholipidosis (DIPLD) represents a big concern for both regulatory authorities and pharmaceutical companies in drug discovery. Many researches pointed out that the negatively charged intralysosomal lipids play an important role in the formation of DIPLD. To better mimic this negatively charged lipid surface, a novel immobilized artificial membrane (IAM) column was prepared via in situ copolymerization of 12-methacryloyl n-dodecylphosphocholine (MDPC) and 12-methacryloyl n-dodecylphosphoric acid (MDPA). By introducing MDPA, the surface of the resulting monolithic column can be maintained negatively charged over a broad pH range. Scanning electron microscopy, elemental analysis and nano-HPLC experiments were carried out to characterize the physicochemical properties and chromatographic performance of the obtained monolithic IAM column. The results of ζ-potential and retention mechanism studies indicate that both hydrophobic and electrostatic interactions contribute greatly to the retention of cation analytes owing to the existence of the negatively charged MDPA under acidic conditions. To better assess the DIPLD potency of drug, the molar ratio between MDPC and MDPA in the monolithic column was carefully optimized. The results show that the poly(MDPC70PA30-co-EDMA) column has the best predictability with only two false-positives (donepezil, flecainide) in qualitative analysis of 61 drugs.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/inducido químicamente , Membranas Artificiales , Preparaciones Farmacéuticas , Fosfolípidos , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Ácidos Fosfatidicos , Fosfolípidos/química , Fosfolípidos/metabolismo , Electricidad Estática
18.
Biomater Sci ; 9(7): 2732-2742, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33620045

RESUMEN

The construction of surface structures of manganese oxide nanoparticles (MONs) in order to promote their longitudinal relaxivity r1 to surpass those of commercially available Gd(iii) complexes is still a significant challenge. Herein, we successfully obtained Mn3O4/PtOx nanocomposites (NCs) with an r1 of 20.48 mM-1 s-1, four times higher than that of commercially available Gd-DTPA (5.11 mM-1 s-1). The r2/r1 ratio of these NCs is 1.46 lower than that of Gd-DTPA (2.38). This is the first time that such excellent T1 contrast performance has been achieved using MONs via synergistically utilizing the surface morphology and surface payload. These NCs are composed of porous Mn3O4"skeleton" nanostructures decorated with tiny PtOx nanoparticles (NPs) that are realized using laser ablation and irradiation in liquid and ion etching steps. Experimental results showed that the enlarged specific area of the porous Mn3O4/PtOx NCs and the payload of ultrafine PtOx NPs synergistically facilitated the T1 contrast capabilities. The former favors sufficient proton-electron interactions and the latter reduces the global molecular tumbling motion. These NCs also exhibit an evident computed tomography (CT) attenuation value of 24.13 HU L g-1, which is much better than that achieved using the commercial product iopromide (15.9 HU L g-1). The outstanding magnetic resonance (MR) imaging and CT imaging performances of the Mn3O4/PtOx NCs were proved through in vivo experiments. Histological examinations and blood circulation assays confirmed the good biosafety of the NCs. These novel findings showcase a brand-new strategy for fabricating excellent MON T1 contrast agents (CAs) on the basis of the surface structure and they pave the way for their practical clinical applications in dual-modal imaging.


Asunto(s)
Nanocompuestos , Neoplasias , Medios de Contraste , Gadolinio DTPA , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
19.
J Chromatogr A ; 1635: 461740, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33271429

RESUMEN

In this study, a novel at-line nanofractionation screening platform was successfully developed for the rapid screening and identification of α-glucosidase inhibitors from natural products. A time-course bioassay based on high density well-plates was performed in parallel with high resolution mass spectrometry (MS), providing a straightforward and rapid procedure to simultaneously obtain chemical and biological information of active compounds. Through multiple nanofractionations into the same well-plate and comparisons of the orthogonal separation results of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC), the α-glucosidase inhibitors can be accurately identified from co-eluates. The screening platform was comprehensively evaluated and validated, and was applied to the screenings of green tea polyphenols and Ginkgo folium flavonoids. After accurate peak shape and retention time matching between the bioactivity chromatograms and MS chromatograms, ten α-glucosidase inhibitors were successfully screened out and identified. The proposed screening method is rapid, effective and can avoid ignoring low abundant/active inhibitors.


Asunto(s)
Productos Biológicos/química , Técnicas de Química Analítica/métodos , Inhibidores de Glicósido Hidrolasas/análisis , Cromatografía Liquida , Cromatografía de Fase Inversa , Flavonoides/química , Flavonoides/aislamiento & purificación , Ginkgo biloba/química , Inhibidores de Glicósido Hidrolasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Polifenoles/química , Polifenoles/aislamiento & purificación , Té/química
20.
PeerJ ; 8: e9628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821545

RESUMEN

BACKGROUNDS: Cytochrome P450 (P450) 2E1 is one of the primary enzymes responsible for the metabolism of xenobiotics, such as drugs and environmental carcinogens. The genetic polymorphisms of the CYP2E1 gene in promoter and coding regions have been identified previously in the Han Chinese population from four different geographic areas of Mainland China. METHODS: To investigate whether genetic variants identified in the CYP2E1 coding region affect enzyme function, the enzymes of four single nucleotide polymorphism (SNP) variants in the coding region (novel c.1009C>T, causing p.Arg337X, where X represents the translational stop codon; c.227G>A, causing p.Arg76His; c.517G>A, yielding p.Gly173Ser; and c.1263C>T, presenting the highest allele frequency), two novel alleles (c.[227G>A;1263C>T] and c.[517G>A;1263C>T]), and the wild-type CYP2E1 were heterologously expressed in COS-7 cells and functionally characterized in terms of expression level and chlorzoxazone 6-hydroxylation activity. The impact of the CYP2E1 variant sequence on enzyme activity was predicted with three programs: Polyphen 2, PROVEAN and SIFT. RESULTS: The prematurely terminated p.Arg337X variant enzyme was undetectable by western blotting and inactive toward chlorzoxazone 6-hydroxylation. The c.1263C>T and c.[517G>A;1263C>T] variant enzymes exhibited properties similar to those of the wild-type CYP2E1. The CYP2E1 variants c.227G>A and c.[227G>A;1263C>T] displayed significantly reduced enzyme activity relative to that of the wild-type enzyme (decreased by 42.8% and 32.8%, respectively; P < 0.01). The chlorzoxazone 6-hydroxylation activity of the c.517G>A transfectant was increased by 31% compared with the wild-type CYP2E1 enzyme (P < 0.01). Positive correlations were observed between the protein content and enzyme activity for CYP2E1 (P = 0.0005, r 2 = 0.8833). The characterization of enzyme function allelic variants in vitro was consistent with the potentially deleterious effect of the amino acid changes as determined by prediction tools. CONCLUSIONS: These findings indicate that the genetic polymorphisms of CYP2E1, i.e., c.1009C>T (p.Arg337X), c.227G>A (p.Arg76His), and c.517G>A (p.Gly173Ser), could influence the metabolism of CYP2E1 substrates, such as chlorzoxazone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...