Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Arch Toxicol ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522057

RESUMEN

Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.

2.
ACS Nano ; 18(13): 9688-9703, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517764

RESUMEN

Numerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy. Herein we showed that the drug brain-entering efficiency was highly related to administration routes (oral, subcutaneous, or dCLN delivery). Besides, by injecting a long-acting lyotropic liquid crystalline implant encapsulating cilostazol (an FDA-approved selective PDE-3 inhibitor) and donepezil hydrochloride (a commonly used symptomatic relief agent to inhibit acetylcholinesterase for Alzheimer's disease) near the deep cervical lymph nodes of aged mice (about 20 months), an increase of lymphatic vessel coverage in the nodes and meninges was observed, along with accelerated drainage of macromolecules from brains. Compared with daily oral delivery of cilostazol and donepezil hydrochloride, a single administered dual drugs-loaded long-acting implants releasing for more than one month not only elevated drug concentrations in brains, improved the clearing efficiency of brain macromolecules, reduced Aß accumulation, enhanced cognitive functions of the aged mice, but improved patient compliance as well, which provided a clinically accessible therapeutic strategy toward aged Alzheimer's diseases.


Asunto(s)
Enfermedad de Alzheimer , Vasos Linfáticos , Humanos , Ratones , Animales , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Cilostazol , Donepezilo , Acetilcolinesterasa , Sistema Linfático/patología , Encéfalo/patología , Drenaje
3.
Small Methods ; : e2301689, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420900

RESUMEN

Aqueous MXene dispersion suffers from a bottleneck issue of oxidation, leading to its gradual deterioration and ultimately compromised physicochemical characteristics. Herein, Tris-HCl buffer is employed to stabilize the diluted Ti3 C2 Tx -MXene dispersion (0.05 mg mL-1 ) through the synergy of its potent pH-regulation capability and capping effect toward oxidation-susceptible defects/edges. Tris-HCl functionalized Ti3 C2 Tx maintained its original morphology, structure, and favorable dispersity even after 150 days of aging under naturally aerated conditions. The pH-regulation nature of Tris-HCl is elucidated through solution monitoring of Ti3 C2 Tx dispersion, while the adsorption of Tris-HCl onto defects/edges is revealed by spectral analysis and multi-scale simulations. Tris-HCl at the neutral pH can bind to the negatively charged basal plane of Ti3 C2 Tx via + HTris moiety, while the other moiety (Tris) interacts with the exposed edge-based Ti atoms and/or intrinsic defects, forming a Ti─N bond that prevents MXene from attack by H2 O and O2 . Besides, Tris-HCl stabilized Ti3 C2 Tx exhibited nearly identical capacitive characteristics to its freshly-etched counterpart, indicating the minimal impact of Tris-HCl on electrochemical performance of Ti3 C2 Tx during long-term storage. This study provides practical guidance for stabilizing MXene in their native aqueous dispersion without compromising the inherent properties.

4.
Small ; : e2309171, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196296

RESUMEN

Various natural polymers offer sustainable alternatives to petroleum-based adhesives, enabling the creation of high-performance engineered materials. However, additional chemical modifications and complicated manufacturing procedures remain unavoidable. Here, a sustainable high-performance engineered composite that benefits from bonding strategies with multiple energy dissipation mechanisms dominated by chemical adhesion and mechanical interlocking is demonstrated via the fungal smart creative platform. Chemical adhesion is predominantly facilitated by the extracellular polymeric substrates and glycosylated proteins present in the fungal outer cell walls. The dynamic feature of non-covalent interactions represented by hydrogen bonding endows the composite with extensive unique properties including healing, recyclability, and scalable manufacturing. Mechanical interlocking involves multiple mycelial networks (elastic modulus of 2.8 GPa) binding substrates, and the fungal inner wall skeleton composed of chitin and ß-glucan imparts product stability. The physicochemical properties of composite (modulus of elasticity of 1455.3 MPa, internal bond strength of 0.55 MPa, hardness of 82.8, and contact angle of 110.2°) are comparable or even superior to those of engineered lignocellulosic materials created using petroleum-based polymers or bioadhesives. High-performance composite biofabrication using fungi may inspire the creation of other sustainable engineered materials with the assistance of the extraordinary capabilities of living organisms.

5.
Food Chem Toxicol ; 183: 114213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052401

RESUMEN

The present dosage of Dexamethasone (DEX) administered to pregnant women may pose a risk of toxicity to their unborn offspring. We aimed to develop a maternal-fetal physiologically based toxicokinetic (PBTK) model for DEX in pregnant rats, with a specific focus on the role of the P-glycoprotein (P-gp) transporter in placenta perfusion, and finally facilitate the optimization of clinical DEX dosage. We conducted animal experiments to determine DEX concentrations in various rat tissues, and constructed the PBTK model using MATLAB software. Sensitivity analysis was performed to assess input parameters and the model stability, with fold error (FE) values serving as evaluation indices. Our results indicate the successful construction of the PBTK model, with the fitting key parameters such as the absorption rate constant (Ka), intrinsic hepatic clearance (CLh,int) and intrinsic P-gp clearance (CLint,P-gp). The median concentration of DEX in maternal plasma, fetal plasma, fetal lung, and fetal brain were determined, which allowed us to fit the tissue-to-plasma partition coefficients for the fetal lung (Kp,lung,f) and fetal brain (Kp,brain,f). After making adjustments, all calculated FE values were found to be less than 2, demonstrating the acceptability and accuracy of our model's predictions. Our model integrated external literature data and internal animal experimentation to comprehensively evaluate the maternal-fetal PK characteristics of DEX. These findings provide valuable support for the optimization of clinical DEX dosing.


Asunto(s)
Dexametasona , Placenta , Humanos , Ratas , Embarazo , Femenino , Animales , Dexametasona/toxicidad , Toxicocinética , Placenta/metabolismo , Perfusión , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
6.
Aging Clin Exp Res ; 35(12): 2911-2918, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847351

RESUMEN

BACKGROUND: Perioperative neurocognitive disorders (PND) are a common central nervous system complication that predominantly affects the elderly. PND after surgery includes postoperative delirium (POD), delayed neurocognitive recovery up to 30 days (DNR), and postoperative neurocognitive disorder up to 12 months. Diabetes is an important independent risk factor for PND. Over the years, few studies have assessed the incidence of PND and the difference in serum biomarkers between diabetic and non-diabetic patients. We sought to examine the difference in the incidence of PND between elderly diabetic and non-diabetic patients in China and identify the risk factors of PND in elderly diabetics. METHODS: We conducted a secondary and exploratory data analysis from our prior studies, including patients aged 65 years or older who underwent non-cardiac elective surgery with general anesthesia. We used the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and Montreal Cognitive Assessment (MoCA) to assess patient cognition. RESULTS: A total of 236 patients were analyzed; the incidence of PND was significantly higher in diabetic than in non-diabetic patients within 30 days (59.2% vs. 36.8%) (P = 0.022). Multivariate logistic regression analysis showed that the preoperative MoCA was an independent risk factor for PND (odds ratio, 0.88 [0.8 to 0.97]; P = 0.014), and Hosmer-Lemeshow tests showed that it could predict PND in diabetic patients (P = 0.360). According to the maximum Youden index, the optimal cutoff for preoperative MoCA was 21.5 points, yielding a specificity and sensitivity of 88.0% and 55.2% for PND. The levels of glial fibrillary acidic protein (GFAP) and Tau in diabetic patients before and after surgery were significantly higher than in non-diabetic patients among cases of PND (P = 0.002 and 0.011, respectively). CONCLUSION: The incidence of PND is higher in diabetic than in non-diabetic patients in China, and preoperative MoCA is an independent risk factor for PND in diabetics. Meanwhile, the changes in GFAP and p-Tau in diabetic patients who experienced PND were significantly higher than in non-diabetic ones.


Asunto(s)
Diabetes Mellitus , Trastornos Neurocognitivos , Anciano , Humanos , Estudios Retrospectivos , Cognición , Factores de Riesgo , Diabetes Mellitus/epidemiología
7.
Int J Pharm ; 645: 123383, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678476

RESUMEN

Arthritis is a syndrome characterized by inflammation in the joints. Triamcinolone acetonide (TA) was used as an anti-inflammatory agent in the treatment of this disease. However, there are limitations to its clinical application, including rapid clearance from the joint cavity, potential joint damage from multiple injections, and adverse joint events. To address these drawbacks, we developed a tunable in situ forming implant loaded with TA. This injectable polymer solution utilized poly (lactic-co-glycolic acid) (PLGA) as an extended-release material. When injected into the joints, the solution solidifies into implants through a solvent exchange in the aqueous environment. The implants demonstrated robust retention at the injection site and released TA over several weeks even months through diffusion and erosion. By adding different proportions of low water-miscible plasticizers, the release period of the drug could be precisely adjusted. The plasticizers-optimized implants exhibited a tough texture, enhancing the therapeutic efficiency and drug safety in vivo. In arthritic model studies, the tunable TA-loaded implants significantly reduced swelling, pain, and motor discoordination, and also showed suppression of arthritis progression to some extent. These findings suggested that TA-loaded ISFI holds promise for managing inflammatory disorders in individuals with arthritis.


Asunto(s)
Artritis , Triamcinolona Acetonida , Humanos , Solventes , Plastificantes , Antiinflamatorios
8.
Front Vet Sci ; 10: 1223450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601763

RESUMEN

Diet-associated characteristics such as dietary protein levels can modulate the composition and diversity of the gut microbiota, leading to effects on the productive performance and overall health of animals. The objective of this study was to see how changes in dietary protein levels affect milk yield, body weight gain, blood biochemical parameters, and gut microbiota in lactating ewes. In a completely randomized design, eighteen ewes were randomly assigned to three groups (n = 6 ewes/group), and each group was assigned to one of three dietary treatments with different protein contents. The ewes' groups were fed on 8.38% (S-I), 10.42% (S-m), and 13.93% (S-h) dietary protein levels on a dry basis. The body weight gain and milk yield were greater (p < 0.05) in ewes fed the S-h dietary treatment than in those fed the S-m and S-1 diets, respectively. However, milk protein contents were similar (p > 0.05) across the treatments. The blood glucose, total protein, cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, lactate, creatinine, and C-reactive protein contents of lactating ewes were not influenced (p > 0.05) by different dietary protein levels. The alanine transaminase, aminotransferase, and lactate dehydrogenase activities were also not changed (p > 0.05) across the groups. However, blood urea nitrogen and albumin contents of lactating ewes were changed (p < 0.05) with increasing levels of dietary protein, and these metabolite concentrations were higher (p < 0.05) for S-h than the rest of the treatments. In the different treatment groups, Firmicutes and Bacteroidetes were found to be the most dominant phyla. However, the abundance of Lachnospiraceae species decreased as dietary protein levels increased. Within the Bacteroidetes phylum, Rikenellaceae were more abundant, followed by Prevotellaceae, in ewes fed the S-m diet compared to those fed the other diets. Based on the results, feeding at an optimal protein level improved milk yield and body weight gain through modifying the digestive tract's beneficial bacterial communities. The results of blood metabolites suggested that feeding higher-protein diets has no negative impact on health.

9.
Front Endocrinol (Lausanne) ; 14: 1194425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621652

RESUMEN

In ruminants, the digestion and utilization of dietary proteins are closely linked to the bacterial populations that are present in the gastrointestinal tract. In the present study, 16S rDNA sequencing, together with a metagenomic strategy was used to characterize the fecal bacteria of ewes in the early lactation stage after feeding with three levels of dietary proteins 8.58%, 10.34%, and 13.93%, in three different groups (H_1), (H_m) and (H_h), respectively. A total of 376,278,516 clean data-points were obtained by metagenomic sequencing. Firmicutes and Bacteroidetes were the dominant phyla, regardless of the dietary protein levels. In the H_h group, the phyla Proteobacteria, Caldiserica, and Candidatus_Cryosericota were less abundant than those in the H_I group. In contrast, Lentisphaerae, Chlamydiae, and Planctomycetes were significantly more abundant in the H_h group. Some genera, such as Prevotella, Roseburia, and Firmicutes_unclassified, were less abundant in the H_h group than those in the H_I group. In contrast, Ruminococcus, Ruminococcaceae_noname, Anaerotruncus, Thermotalae, Lentisphaerae_noname, and Paraprevotella were enriched in the H_h group. The acquired microbial genes were mainly clustered into biological processes; molecular functions; cytosol; cellular components; cytoplasm; structural constituents of ribosomes; plasma membranes; translation; and catalytic activities. 205987 genes were significantly enriched in the H_h group. In contrast, 108129 genes were more abundant in the H_I group. Our findings reveal that dynamic changes in fecal bacteria and their genes are strongly influenced by the levels of dietary proteins. We discovered that differentially expressed genes mainly regulate metabolic activity and KEGG demonstrated the primary involvement of these genes in the metabolism of carbohydrates, amino acids, nucleotides, and vitamins. Additionally, genes responsible for metabolism were more abundant in the H_h group. Investigating fecal bacterial characteristics may help researchers develop a dietary formula for lactating ewes to optimize the growth and health of ewes and lambs.


Asunto(s)
Microbioma Gastrointestinal , Ovinos , Animales , Femenino , Lactancia , Heces , Proteínas en la Dieta , Oveja Doméstica , Clostridiales
10.
Adv Sci (Weinh) ; 10(24): e2300273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348084

RESUMEN

MXenes suffer from severe oxidation and progressive degradation in aqueous media due to its poor chemical stability. Herein, sodium dodecyl sulfate (SDS) is employed as an efficient protectant for long-term storage of Ti3 C2 Tx -MXene aqueous dispersion. Experimental data support SDS's capability to protect oxidation-prone sites on Ti3 C2 Tx nanosheets, providing extended colloidal stability of up to 213 days. Concentration-dependent anti-oxidation effect articulates that 1.5 mg mL-1 is deemed as an ideal SDS dose for Ti3 C2 Tx to achieve optimal oxidation-resistance in aqueous solution. Additionally, a chroma strategy is developed to instantly and precisely measure the oxidation degree of Ti3 C2 Tx . Adsorption-driven anti-oxidation efficacy of SDS is further confirmed by optimized conformations with interaction energies of SDS on termination-free and surface-defective Ti3 C2 Tx through multiscale simulations. This proposed route is a step forward in broadening the horizons of experimental and theoretical investigations of MXenes with promising implications for long-term storage and reliable applications.

11.
Inflammopharmacology ; 31(4): 1993-2005, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37155118

RESUMEN

Oridonin, a well-known traditional Chinese herbal medicinal product isolated from Isodon rubescens (Hemsl.) H.Hara, has many potential properties, including anti-inflammatory and antioxidant activities. However, there is no evidence whether oridonin have a protective effect on atherosclerosis. This study focused on the effects of oridonin on oxidative stress and inflammation generated from atherosclerosis. The therapeutic effect on atherosclerosis was evaluated by intraperitoneal injection of oridonin in a high-fat fed ApoE-/- mouse model. We isolated mouse peritoneal macrophages and detected the effect of oridonin on oxidized low-density lipoprotein-induced lipid deposition. Oil red O staining, Masson's staining, dihydroethidium fluorescence staining, immunohistochemical staining, western blotting analysis, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR were used to evaluate the effect on atherosclerosis and explore the mechanisms. Oridonin treatment significantly alleviated the progression of atherosclerosis, reduced macrophage infiltration and stabilized plaques. Oridonin could significantly inhibit inflammation associated with NLRP3 activation. Oridonin significantly reduced oxidative stress by blocking Nrf2 ubiquitination and degradation. We also found that oridonin could prevent the formation of foam cells by increasing lipid efflux protein and reducing lipid uptake protein in macrophages. Oridonin has a protective effect on atherosclerosis in ApoE-/- mice, which may be related to the inhibition of NLRP3 and the stabilization of Nrf2. Therefore, oridonin may be a potential therapeutic agent for atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Noqueados , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Inflamación/tratamiento farmacológico , Apolipoproteínas E , Apolipoproteínas/uso terapéutico , Ratones Endogámicos C57BL
12.
Artículo en Inglés | MEDLINE | ID: mdl-37018701

RESUMEN

Most of the existing bi-modal (RGB-D and RGB-T) salient object detection methods utilize the convolution operation and construct complex interweave fusion structures to achieve cross-modal information integration. The inherent local connectivity of the convolution operation constrains the performance of the convolution-based methods to a ceiling. In this work, we rethink these tasks from the perspective of global information alignment and transformation. Specifically, the proposed cross-modal view-mixed transformer (CAVER) cascades several cross-modal integration units to construct a top-down transformer-based information propagation path. CAVER treats the multi-scale and multi-modal feature integration as a sequence-to-sequence context propagation and update process built on a novel view-mixed attention mechanism. Besides, considering the quadratic complexity w.r.t. the number of input tokens, we design a parameter-free patch-wise token re-embedding strategy to simplify operations. Extensive experimental results on RGB-D and RGB-T SOD datasets demonstrate that such a simple two-stream encoder-decoder framework can surpass recent state-of-the-art methods when it is equipped with the proposed components.

13.
Front Pharmacol ; 14: 1120041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937846

RESUMEN

Maternal exposure to dexamethasone can cause developmental toxicity of long bones in offspring. However, the effect of dexamethasone on the trans-differentiation of growth plate chondrocytes into osteoblasts and its role in bone dysplasia of fetuses caused by prenatal dexamethasone exposure (PDE) remains unclear. In this study, pregnant mice were treated with different doses, stages, and courses of dexamethasone according to clinical practice to reveal the phenomenon. Further, growth plate chondrocytes were treated with dexamethasone in vitro to clarify the phenomenon and mechanism. The results showed that PDE caused dysplasia of fetal long bones in female and male mice, accompanied by the delayed formation of the primary ossification center and the widening hypertrophic zone of growth plate cartilage. Meanwhile, PDE increased the number of hypertrophic chondrocytes at growth plate cartilage and decreased the number of osteoblasts at the primary ossification center. Moreover, PDE significantly decreased the expression of osteogenic transcription factor Runx2 but increased the expression of hypertrophic chondrocytes marker Col10. These above phenomena were more significant in the high dose, early stage, and double courses of dexamethasone exposure groups, and the male fetal mice showed more obvious than the female fetal mice. In vitro, dexamethasone significantly inhibited the trans-differentiation of growth plate chondrocytes into osteoblasts, accompanied by a decrease in Runx2 expression and an increase in Col10 expression. In conclusion, this study revealed the phenomenon and mechanism of fetal bone dysplasia caused by PDE from the new perspective of trans-differentiation disorder of growth plate chondrocytes to osteoblasts.

14.
Animals (Basel) ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38200852

RESUMEN

Diet-associated characteristics such as dietary protein levels can modulate the gut's primary or secondary metabolites, leading to effects on the productive performance and overall health of animals. Whereas fecal metabolite changes are closely associated with gut metabolome, this study aimed to see changes in the rumen metabolite profile of lactating ewes fed different dietary protein levels. For this, eighteen lactating ewes (approximately 2 years old, averaging 38.52 ± 1.57 kg in their initial body weight) were divided into three groups (n = 6 ewes/group) by following the complete randomized design, and each group was assigned to one of three low-protein (D_I), medium-protein (D_m), and high-protein (D_h) diets containing 8.58%, 10.34%, and 13.93% crude protein contents on a dry basis, respectively. The fecal samples were subjected to untargeted metabolomics using ultra-performance liquid chromatography (UPLC). The metabolomes of the sheep fed to the high-protein-diet group were distinguished as per principal-component analysis from the medium- and low-protein diets. Fecal metabolite concentrations as well as their patterns were changed by feeding different dietary protein levels. The discriminating metabolites between groups of nursing sheep fed different protein levels were identified using partial least-squares discriminant analysis. The pathway enrichment revealed that dietary protein levels mainly influenced the metabolism-associated pathways (n = 63 and 39 in positive as well as negative ionic modes, respectively) followed by protein (n = 15 and 8 in positive as well as negative ionic modes, respectively) and amino-acid (n = 14 and 7 in positive as well as negative ionic modes, respectively) synthesis. Multivariate and univariate analyses showed comparative changes in the fecal concentrations of metabolites in both positive and negative ionic modes. Major changes were observed in protein metabolism, organic-acid biosynthesis, and fatty-acid oxidation. Pairwise analysis and PCA reveal a higher degree of aggregation within the D-h group than all other pairs. In both the PCA and PLS-DA plots, the comparative separation among the D_h/D_m, D_h/D_I, and D_m/D_I groups was superior in positive as well as negative ionic modes, which indicated that sheep fed higher protein levels had alterations in the levels of the metabolites. These metabolic findings provide insights into potentiated biomarker changes in the metabolism influenced by dietary protein levels. The target identification may further increase our knowledge of sheep gut metabolome, particularly regarding how dietary protein levels influence the molecular mechanisms of nutritional metabolism, growth performance, and milk synthesis of sheep.

15.
IEEE Trans Image Process ; 31: 7350-7362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36409818

RESUMEN

Benefiting from color independence, illumination invariance and location discrimination attributed by the depth map, it can provide important supplemental information for extracting salient objects in complex environments. However, high-quality depth sensors are expensive and can not be widely applied. While general depth sensors produce the noisy and sparse depth information, which brings the depth-based networks with irreversible interference. In this paper, we propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD). Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks. In this way, the depth information can be completed and purified. Moreover, we introduce a multi-modal filtered transformer (MFT) module, which equips with three modality-specific filters to generate the transformer-enhanced feature for each modality. The proposed model works in a depth-free style during the testing phase. Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time. And, the resulted depth map can help existing RGB-D SOD methods obtain significant performance gain.

16.
Zhongguo Gu Shang ; 35(9): 859-62, 2022 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-36124457

RESUMEN

OBJECTIVE: To explore application value of ultrasound in treating postpartum pubis symphysis diastasis by bone setting manipulation. METHODS: Retrospective analysis was performed on 30 patients (case group) with postpartum pubis symphysis diastasis diagnosed in Wangjing Hospital, China Academy of Chinese Medical Sciences from June 2017 to January 2021, aged from 21 to 43 years old, with an average of (33.0±3.5) years old. The main clinical manifestations were mobility disorders such as turning over and walking, and all patients were treated by bone setting manipulation. Before and after treatment, pain and degree of pubic symphysis separation were evaluated by visual analogue scale(VAS) and ultrasonography. In normal group, 30 menopausal women aged from 49 to 59 years old with an average of(54.0±2.9) years old who wanted to remove intra uterine device(IUD) and were underwent conventional pelvic plain radiographswere selected, and the width of pubic symphysis space was measured by ultrasound and plain radiographs. RESULTS: In normal group, the width of pubic symphysis was about (5.2±1.7) mm by ultrasonography, X-ray measurement was (5.0±2.1) mm, and showed no difference(P>0.05).In case group, the width of pubic symphysis measured by ultrasound before manipulation was about (9.5±1.8) mm, VAS was 6.05(5.27, 6.80) scores;while the width of pubic symphysis measured by ultrasound before manipulation was about (5.8±1.3) mm, VAS was 0(0, 0) scores, and there were statistical difference before and after manipulation (P<0.05). CONCLUSION: Ultrasound is examation method with safe, non radioactive, easy to repeat for many times, could clearly show cartilage, ligament and bone structure around pubic symphysis, and is more suitable for the imaging diagnosis of postpartum pubis symphysis diastasis, which provide quantitative imaging basis for clinical evaluation of the curative effect of bone setting manipulation in treating postpartum pubis symphysis diastasis.


Asunto(s)
Hueso Púbico , Diástasis de la Sínfisis Pubiana , Adulto , Femenino , Humanos , Persona de Mediana Edad , Periodo Posparto , Diástasis de la Sínfisis Pubiana/diagnóstico por imagen , Diástasis de la Sínfisis Pubiana/terapia , Estudios Retrospectivos , Ultrasonografía , Adulto Joven
17.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142139

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most frequent malignancies in the world. Although increasing evidence supports the role of heterogeneous ribonucleoprotein particle A1 (HNRNP A1) in tumor progression, the function of HNRNP A1 in HCC remains unclear. Here, we focused on the role of HNRNP A1 in the development of HCC. In this study, we found HNRNP A1 participates in many aspects of HCC, such as progression and prognosis. Our results showed that HNRNP A1 is upregulated in human HCC tissues and cell lines. High expression of HNRNP A1 can promote the proliferation, migration, and invasion in HCC cells and accelerate tumor progression in mice. Moreover, we found that HNRNP A1 prevents the senescence process of HCC cells. Knocking down of HNRNP A1 promotes the expression of P16INK4, which arrests the cell cycle and then induces the senescence phenotype in HCC cells. Furthermore, we found that HNRNP A1 regulated necroptosis and mitochondrial dynamics. In summary, our study indicates that HNRNP A1 promotes the development of HCC, which suggests a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Dinámicas Mitocondriales , Necroptosis , Ribonucleoproteínas
18.
World J Clin Cases ; 10(17): 5756-5763, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35979094

RESUMEN

BACKGROUND: We report a rare case of a large congenital hemangioma (CH) in the maxillofacial region in a female neonate that caused thrombocytopenia and heart failure. With close multidisciplinary collaboration, the congenital hemangioma was successfully resected with good results. CASE SUMMARY: The patient was delivered at gestational age of 36 wk by cesarean section due to cephalopelvic disproportion and lack of onset of labor (birth weight: 2630 g). A right-sided facial tumor was detected in the fetus during routine antenatal ultrasound examination of the mother at 32 wk of gestation. Physical examination revealed a 7 cm × 7 cm × 3 cm hard, dull purple-colored mass on the right maxillofacial region. The mass was tense and had prominent surface telangiectasias. Laboratory investigations revealed reduced hemoglobin and platelet count, and increased activated partial thromboplastin time, prothrombin time, and thrombin time. International normalized ratio, fibrin degradation products, and D-Dimer levels were significantly increased. Thromboelastography showed increased alpha angle, mean amplitude, and the clot formation speed. Thyroid-stimulating hormone level was significantly elevated. The patient was administered prednisone, propranolol, euthyrox, vitamin K1, milrinone, and digoxin. After operation, cefepime was administered for anti-infection and propranolol was prescribed at discharge. CONCLUSION: We report a rare case of CH in the right maxillofacial region causing thrombocytopenia and heart failure.

20.
BMC Complement Med Ther ; 22(1): 180, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799227

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the primary cause of cardiovascular disease and the incidence is extremely common; however, there are currently few drugs that can effectively treat AS. Although oridonin has been widely used to treat inflammation and cancer for numerous years, to the best of our knowledge, its protective effect against AS has not been reported. Therefore, the present study aimed to investigate whether oridonin attenuated AS. METHODS: By using text mining, chemometric and chemogenomic methods, oridonin was predicted to be a beneficial agent for the treatment of AS. A parallel flow chamber was used to establish a low shear stress (LSS)-induced endothelial cell (EC) dysfunction model. Briefly, ECs were exposed to 3 dyn/cm2 LSS for 30 min and subsequently treated with oridonin or transfected with a small interfering RNA (siRNA) targeting nuclear factor erythroid 2-related factor 2 (NRF2). Reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) in EA.hy926 cells were analyzed to determine the level of oxidative stress. The nitric oxide (NO) levels and mRNA expression levels of endothelial NO synthase (eNOS), endothelin-1 (ET-1) and prostaglandin synthase (PGIS) in EA.hy926 cells were analyzed to determine EC dysfunction. Furthermore, the mRNA and protein expression levels of NRF2 were analyzed using reverse transcription-quantitative PCR and western blot. In addition, zebrafish were fed with a high-cholesterol diet to establish a zebrafish AS model, which was used to observe lipid accumulation and inflammation under a fluorescence microscope. RESULTS: We found LSS led to oxidative stress and EC dysfunction; this was primarily indicated through the significantly decreased SOD and GSH content, the significantly increased MDA, GSSG and ROS content, the upregulated mRNA expression levels of ET-1, and the downregulated NO levels and mRNA expression levels of eNOS and PGIS in ECs. Notably, oridonin could improve LSS-induced oxidative stress and EC dysfunction, and the effects of oridonin were reversed by the transfection with NRF2 siRNA. Oridonin also attenuated lipid accumulation and neutrophil recruitment at the LSS regions in the zebrafish AS model. CONCLUSIONS: In conclusion, the results of the present study suggested that oridonin may ameliorate LSS-induced EC dysfunction and oxidative stress by activating NRF2, thereby attenuating AS.


Asunto(s)
Aterosclerosis , Factor 2 Relacionado con NF-E2 , Animales , Aterosclerosis/tratamiento farmacológico , Diterpenos de Tipo Kaurano , Células Endoteliales/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Inflamación , Lípidos , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...