Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999665

RESUMEN

Pepper (Capsicum annuum L.) is one of the most important economic crops in the world. By controlling the transport and distribution of photosynthetic products between cells and organs, sugar transporters are widely involved in growth and development, environmental adaptation, and microbial interactions. The present study was carried out at the genome-wide level to systematically characterize sugar transporters. As a result, 50 MST, 3 SUT, and 29 SWEET genes were identified and classified. The expression pattern of sugar transporters in pepper was analyzed by transcriptomic data. The expression properties of sugar transporters were further explored in pepper varieties with significant differences in weight, shape, and pungency. It was shown that the pepper sugar transporter genes had obvious spatiotemporal specific expression characteristics and exhibited variety-specific expression preferences. We focus on analyzing candidate genes that may be involved in fruit development and expansion. We further explore the response of pepper sugar transporters to adversity stress using a structural equation model. Finally, we found that the MST, SUT, and SWEET families are collectively involved in balancing pepper resistance to abiotic stress by coordinating the expression strengths of different family members. Our study may contribute to the functional study of pepper sugar transporter genes and create the prospect of utilizing sugar transporter gene resources to improve pepper variety.

2.
J Clin Neurosci ; 126: 194-201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38941917

RESUMEN

OBJECTIVES: A single therapeutic approach is not always successful in the treatment of herpes zoster neuralgia, and the appropriate combination of different treatments deserves further exploration. In this study, we investigated the clinical efficacy of high-voltage long-duration pulsed radiofrequency (PRF) combined with stellate ganglion block (SGB) in the acute phase of thoracic and dorsal herpes zoster neuralgia under dual guidance of ultrasound and C-arm. METHODS: 79 cases of acute zoster neuralgia were grouped premised upon differing therapeutic approaches: standard voltage PRF (group S, the temperature, duration, pulse width, frequency and voltage were set to 42 °C, 300 s, 20 ms, 2 Hz, and 45 V), high-voltage long-duration PRF (group H, parameters of PRF were set to 42 °C, 900 s, 20 ms, 2 Hz, and 90 V, respectively), and high-voltage long-duration PRF combined with SGB (group C, parameter settings for PRF are the same as those for group H). The therapeutic outcomes were assessed utilizing the numeric rating scale (NRS), Pittsburgh sleep quality index (PSQI), and Hamilton anxiety rating scale (HAMA). The incidence of clinically significant postherpetic neuralgia post-treatment had been documented. RESULTS: Compared to baseline, scores of NRS, PSQI, and HAMA at each time point post-treatment decreased across all groups, and the decrease was more significant in the C group than in the S group. At the later stage of treatment, the consumption of pregabalin and tramadol and the plasma levels of interleukin-6 and galectin-3 in the C group were significantly lower than those in the S group. The incidence of PHN in the C group was significantly lower than in the S group. CONCLUSIONS: The combination of high-voltage long-duration PRF combined with SGB under dual guidance of ultrasound and C-arm represents a safe, effective, environmentally friendly, and cost-efficient method for treating AZN, significantly improving sleep quality, alleviating anxiety, and reducing the risk of PHN occurrence.

3.
J Cell Mol Med ; 28(10): e18317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801409

RESUMEN

Euphorbiae Humifusae Herba (EHH) is a pivotal therapeutic agent with diverse pharmacological effects. However, a substantial gap exists in understanding its pharmacological properties and anti-tumour mechanisms. This study aimed to address this gap by exploring EHH's pharmacological properties, identifying NSCLC therapy-associated protein targets, and elucidating how EHH induces mitochondrial disruption in NSCLC cells, offering insights into novel NSCLC treatment strategies. String database was utilized to explore protein-protein interactions. Subsequently, single-cell analysis and multi-omics further unveiled the impact of EHH-targeted genes on the immune microenvironment of NSCLC, as well as their influence on immunotherapeutic responses. Finally, both in vivo and in vitro experiments elucidated the anti-tumour mechanisms of EHH, specifically through the assessment of mitochondrial ROS levels and alterations in mitochondrial membrane potential. EHH exerts its influence through engagement with a cluster of 10 genes, including the apoptotic gene CASP3. This regulatory impact on the immune milieu within NSCLC holds promise as an indicator for predicting responses to immunotherapy. Besides, EHH demonstrated the capability to induce mitochondrial ROS generation and perturbations in mitochondrial membrane potential in NSCLC cells, ultimately leading to mitochondrial dysfunction and consequent apoptosis of tumour cells. EHH induces mitochondrial disruption in NSCLC cells, leading to cell apoptosis to inhibit the progress of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mitocondrias , Análisis de la Célula Individual , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Línea Celular Tumoral , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología , Multiómica
4.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627628

RESUMEN

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Filogenia , Temperatura , Poliaminas/metabolismo , Etilenos/metabolismo
6.
Carbohydr Polym ; 334: 122006, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553211

RESUMEN

Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7. Moreover, the immune enhancement mechanism of oligosaccharides with diverse glycosyl compositions was investigated from a molecular interaction perspective. The TLR4-dependent immunoregulatory effect of functional oligosaccharides was shown by measuring the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells treated with different functional oligosaccharides, both with and without Resatorvid [TAK-242] (a Toll-like receptor 4 [TLR4] inhibitor). Western blot analysis showed that binding of the three oligosaccharides to TLR4 activated the downstream signaling pathway and consequently enhanced the immune response. The fluorescence spectra and molecular docking results revealed that the main mechanisms by which these oligosaccharides attach to the TLR4 active pocket are hydrogen bonds and van der Waals forces. Functional oligosaccharides were ranked according to their affinity for TLR4, as follows: MOS > COS > XOS, indicating that oligosaccharides or polysaccharides containing mannose units may confer significant advantages for immune enhancement.


Asunto(s)
Monosacáridos , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Oligosacáridos/farmacología , Oligosacáridos/química , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunidad , Inmunomodulación
7.
Angew Chem Int Ed Engl ; 63(19): e202317856, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38389190

RESUMEN

In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.

8.
Nat Commun ; 15(1): 437, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200030

RESUMEN

The surge in anthropogenic CO2 emissions from fossil fuel dependence demands innovative solutions, such as artificial photosynthesis, to convert CO2 into value-added products. Unraveling the CO2 photoreduction mechanism at the molecular level is vital for developing high-performance photocatalysts. Here we show kinetic isotope effect evidence for the contested protonation pathway for CO2 photoreduction on TiO2 nanoparticles, which challenges the long-held assumption of electron-initiated activation. Employing isotopically labeled H2O/D2O and in-situ diffuse reflectance infrared Fourier transform spectroscopy, we observe H+/D+-protonated intermediates on TiO2 nanoparticles and capture their inverse decay kinetic isotope effect. Our findings significantly broaden our understanding of the CO2 uptake mechanism in semiconductor photocatalysts.

9.
J Sci Food Agric ; 104(6): 3228-3234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072810

RESUMEN

BACKGROUND: Bacillus amyloliquefaciens has excellent protease production ability and holds great prospects for application in the solid-state fermentation of soybean meal (SBM). RESULTS: Among eight strains of bacteria, Bacillus amyloliquefaciens subsp. plantarum CICC 10265, which exhibited higher protease production, was selected as the fermentation strain. The protease activity secreted by this strain reached 106.41 U mL-1 . The microbial community structure differed significantly between natural fermentation and inoculation-enhanced fermented soybean meal (FSBM), with the latter showing greater stability and inhibition of miscellaneous bacterial growth. During fermentation, the temperature inside the soybean meal increased, and the optimal environmental temperature for FSBM was found to be between 35 and 40 °C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and nitrogen solubility index (NSI) results demonstrated that solid-state fermentation had a degrading effect on highly denatured proteins in SBM, resulting in an NSI of 67.1%. CONCLUSION: Bacillus amyloliquefaciens subsp. plantarum CICC 10265 can enhance the NSI of SBM in solid-state fermentation and inhibit the growth of miscellaneous bacteria. © 2023 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Bacillus , Calor , Fermentación , Harina , Solubilidad , Glycine max , Bacterias/metabolismo , Péptido Hidrolasas/metabolismo , Nitrógeno
10.
Nat Commun ; 14(1): 6093, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773159

RESUMEN

Magnon polarons are novel elementary excitations possessing hybrid magnonic and phononic signatures, and are responsible for many exotic spintronic and magnonic phenomena. Despite long-term sustained experimental efforts in chasing for magnon polarons, direct spectroscopic evidence of their existence is hardly observed. Here, we report the direct observation of magnon polarons using neutron spectroscopy on a multiferroic Fe2Mo3O8 possessing strong magnon-phonon coupling. Specifically, below the magnetic ordering temperature, a gap opens at the nominal intersection of the original magnon and phonon bands, leading to two separated magnon-polaron bands. Each of the bands undergoes mixing, interconverting and reversing between its magnonic and phononic components. We attribute the formation of magnon polarons to the strong magnon-phonon coupling induced by Dzyaloshinskii-Moriya interaction. Intriguingly, we find that the band-inverted magnon polarons are topologically nontrivial. These results uncover exotic elementary excitations arising from the magnon-phonon coupling, and offer a new route to topological states by considering hybridizations between different types of fundamental excitations.

11.
Phys Rev E ; 108(1-1): 014305, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583200

RESUMEN

Given a set of standard binary patterns and a defective pattern, the binary pattern retrieval task is to find the closest pattern to the defective one among these standard patterns. The associative-memory network of Kuramoto oscillators consisting of a Hebbian coupling term and a second-order Fourier term can be applied to this task. When the memorized patterns stored in the Hebbian coupling are mutually orthogonal, recent studies show that the network is capable of distinguishing the memorized patterns from most other patterns. However, the orthogonality usually fails in real situations. In this paper, we present a unified approach for the application of this model in pattern retrieval problems with any general set of standard patterns. By subgrouping the standard patterns and employing an orthogonal lift of each subgroup, this approach makes use of the theory in the case of mutually orthogonal memorized patterns. In particular, the error-free retrieval can be guaranteed, which requires that the retrieved pattern must coincide with one of the standard patterns. As illustrative simulations, pattern retrieval tests for partly sheltered Arabic number symbols are presented.

12.
Turk J Chem ; 47(3): 554-571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529220

RESUMEN

In this paper, a new pharmaceutical cocrystal was synthesized using apigenin (AP) and pharmaceutically acceptable conformer nicotinamide (Nico), and the drug delivery between AP-Nico pharmaceutical cocrystal and human serum albumin (HSA) in vivo was studied at atomic scale. The pharmaceutical cocrystal was characterized using Fourier-transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD), and the self-assembling mechanism was explored. The dissolution and cumulative release in vitro were investigated. Molecular dynamic (MD) simulation combined with fluorescence spectroscopy was used to study the delivery mechanism of AP-Nico to HSA. The results showed that AP was pharmaceutically cocrystallized with Nico, which formed a pharmaceutical cocrystal mainly through hydrogen interaction between the -OH groups of AP and -NH2 groups of Nico. The solubility of the AP-Nico was 3 times higher than raw AP and the cumulative release rate was 71%. The fluorescence spectroscopy results showed that the AP-Nico pharmaceutical cocrystal bind with Sudlow's site I inside the HSA molecule with hydrogen-bond interaction as the main force. The Sudlow's site I of HSA conjugated with AP-Nico explains the conformational changes of HSA in-silico. This study provided a useful reference for synthesizing flavonoid pharmaceutical cocrystal to improve solubility and exploring the interaction mechanism while understanding its delivery mechanism in vivo.

13.
Chem Commun (Camb) ; 59(61): 9356-9359, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37431776

RESUMEN

Photocatalytic mineralization of organic pollutions and simultaneously converting CO2 to CO (tetracycline → CO2 → CO) represents a fascinating way to solve the environmental and energy crisis. This work demonstrates the excellent mineralization and CO2 reduction performance of S-vacancy CdS and reveals the high efficiency of the carbon self-recycling two-in-one photocatalytic system.

14.
Appl Microbiol Biotechnol ; 107(13): 4311-4321, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231160

RESUMEN

Helium-neon (He-Ne) laser mutagenesis is widely used in microbiology and plant breeding. In this study, two frameshift mutant representative strains of Salmonella typhimurium TA97a and TA98 and two base pair substitution types TA100 and TA102 were employed as model microorganisms to assess DNA mutagenicity induced by He-Ne laser (3 J·cm-2·s-1, 632.8 nm) for 10, 20, and 30 min. The results revealed that the optimal laser application was 6 h in the mid-logarithmic growth stage. Low-power He-Ne laser for short treatment inhibited cell growth, and continued treatment stimulated the metabolism. The effects of the laser on TA98 and TA100 were the most prominent. Sequencing results from 1500 TA98 revertants showed that there were 88 insertion and deletion (InDel) types in the hisD3052 gene, of which the InDels unique to laser were 21 more than that of the control. Sequencing results from 760 TA100 revertants indicated that laser treatment created Pro (CCC) in the product of the hisG46 gene more likely to be replaced by His (CAC) or Ser (TCC) than by Leu (CTC). Two unique non-classical base substitutions, CCC → TAC and CCC → CAA, also appeared in the laser group. These findings will provide a theoretical basis for further exploration of laser mutagenesis breeding. KEY POINTS: • Salmonella typhimurium served as model organism for laser mutagenesis study. • Laser promoted the occurrence of InDels in the hisD3052 gene of TA98. • Laser promoted the occurrence of base substitution in the hisG46 gene of TA100.


Asunto(s)
Mutágenos , Salmonella typhimurium , Mutágenos/toxicidad , Salmonella typhimurium/genética , Mutagénesis , ADN , Rayos Láser , Pruebas de Mutagenicidad/métodos
15.
Ultrason Sonochem ; 95: 106414, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098311

RESUMEN

The effects of power ultrasound (US) pretreatment on the preparation of soy protein isolate hydrolysate (SPIH) prepared at the same degree of hydrolysis (DH) of 12 % were measured. Cylindrical power ultrasound was modified into mono-frequency (20, 28, 35, 40, 50 kHz) ultrasonic cup coupled with an agitator to make it applicable for high density SPI (soy protein isolate) solutions (14 %, w/v). A comparative study of the alterations of the hydrolysates molecular weight, hydrophobics, antioxidants and functional properties change as well as their relation were explored. The results showed that under the same DH, ultrasound pretreatment decelerated the degradation of protein molecular mass and the decrease rate of the degradation lessened with the increase of ultrasonic frequency. Meanwhile, the pretreatments improved the hydrophobics and antioxidants properties of SPIH. Both surface hydrophobicity (H0) and relative hydrophobicity (RH) of the pretreated groups increased with the decrease of ultrasonic frequency. Lowest frequency (20 kHz) ultrasound pretreatment had the most improved emulsifying properties and water holding capacities, although decrease in the viscosity and solubility were found. Most of these alterations were correspondence toward the change in hydrophobics properties and molecular mass. In conclusion, the frequency selection of ultrasound pretreatment is essential for the alteration of SPIH functional qualities prepared at the same DH.


Asunto(s)
Antioxidantes , Proteínas de Soja , Hidrólisis , Peso Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad
16.
Adv Sci (Weinh) ; 10(19): e2300985, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37083269

RESUMEN

Utilization of lithium (Li) metal anodes in all-solid-state batteries employing sulfide solid electrolytes is hindered by diffusion-related dendrite growth at high rates of charge. Engineering ex-situ Li-intermetallic interlayers derived from a facile solution-based conversion-alloy reaction is attractive for bypassing the Li0 self-diffusion restriction. However, no correlation is established between the properties of conversion-reaction-induced (CRI) interlayers and the deposition behavior of Li0 in all-solid-state lithium-metal batteries (ASSLBs). Herein, using a control set of electrochemical characterization experiments with LixAgy as the interlayer in different battery chemistries, this work identifies that dendritic tolerance in ASSLBs is susceptible to the surface roughness and electronic conductivity of the CRI-alloy interlayer. This work thereby tailors the CRI-alloy interlayer from the typical mosaic structure to a hierarchical gradient structure by adjusting the pit corrosion kinetics from the (de)solvation mechanism to an adsorption model, yielding a smooth organic-rich outer layer and a composition-regulated inorganic-rich inner layer composed mainly of lithiophilic LixAgy and electron-insulating LiF. Ultimately, desirable roughness, conductivity, and diffusivity are integrated simultaneously into the tailored CRI-alloy interlayer, resulting in dendrite-free and dense Li deposition beneath the interlayer capable of improving battery cycling stability. This work provides a rational protocol for the CRI-alloy interlayer specialized for ASSLBs.

17.
Appl Bionics Biomech ; 2023: 4324889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726392

RESUMEN

The fetus movements play an important role in fetal well-being. With the continuous advancement of real-time scanning machines, it is feasible to observe the fetus movement in detail. The characteristics of fetal lower limb movements in prenatal examination have not been systematically investigated. This review proposes the patterns of fetal lower limb movements, the maternal influence on fetal lower limb movements, and the application of fetal lower limb movements for the diagnosis of prenatal diseases. A systematic search of literature on the lower limb movements of the fetus in uterus was performed in the databases, namely, Web of Science and Scopus. Thirty-four publications were selected. This review demonstrates that isolated fetal lower limb movements are rare and always accompanied with the movements of other body segments. Detection of the presence of fetal leg movements seems to be of no diagnostic value for fetuses with prenatal diseases. The isolated lower limb movement was statistically significant different between fetuses of low- and high-risk pregnant women. The coordinated movements of the fetal lower limbs and other parts should be considered when analyzing fetal movements in the future study.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36768022

RESUMEN

There are two types of dimensional allowance (inner and external) related to two distinct areas of occupational health and safety: those being a measure of fit of personal protective equipment (PPE) and those determining the safe and comfortable human interaction with tools and machines, e.g., the latter ones result from wearing PPE increasing the dimensions of the human body and generating limitations in the work environment. In this paper, they are taken to mean the difference between the dimensions of a bare and gloved hand (including glove construction and materials). Dimensional allowances are important in designing the work environment, e.g., machine control panels and tools. The absolute and relative maximum values of dimensional allowances determined in this study for a hand in a firefighter's protective glove for the main anthropometric data are: 16.90 mm (5.90%) for length, 12.00 mm (13.77%) for width, and 15.70 mm (7.96%) for circumference. The obtained results are useful for designers, and especially for designing keys on control panels and LCD touch displays and monitors integrated with machines.


Asunto(s)
Mano , Equipo de Protección Personal , Humanos , Tacto , Condiciones de Trabajo , Guantes Protectores
19.
Int J Biol Macromol ; 231: 123356, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682655

RESUMEN

The lack of a sufficient amount of functional groups in the lignin structure limits its bioapplication. In this work, high-pressure homogenization was performed on original kraft lignin (L-ORI) to prepare lignin nanoparticles (L-NANO), which aimed to improve its functional group contents for further vascular and neurological applications. The results showed that the prepared L-NANO possessed spherical structures with diameters of 40.3-160.4 nm and increased amount of hydroxyl groups. Compared to L-ORI, L-NANO possessed better in vivo and in vitro antioxidant capacity, which could endow it with enhanced protective effects for the vascular and neural development of bisphenol AF (BPAF)-induced zebrafish. In addition, L-NANO reduced the neurotoxicity and cardiovascular toxicity of BPAF in zebrafish by upregulating the expression levels of oxidative stress-related genes (Cu/Zn-Sod and cat), which could further significantly upregulate the expression levels of neurogenesis genes (elavl3, gap43, mbp, and syn2a) and protect the contraction of the cardinal vein (CCV) and early central nervous system development by upregulating the expression levels of vascular genes (flk1 and flt4). The excellent cardiovascular and neurodevelopmental protective ability of L-NANO indicated that high-pressure homogenization is a promising technology for improving the bioactivity of lignin.


Asunto(s)
Lignina , Pez Cebra , Animales , Pez Cebra/metabolismo , Lignina/metabolismo , Compuestos de Bencidrilo/metabolismo , Estrés Oxidativo
20.
Anal Bioanal Chem ; 415(8): 1477-1485, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680590

RESUMEN

Hexavalent chromium is a highly toxic substance, which will pose a serious threat to human life and health and the entire ecosystem. Therefore, it is crucial to establish a simple and rapid detection method for hexavalent chromium. In this work, we fabricated bovine serum albumin-stabilized silver nanocluster (BSA-Ag13 NC) which exhibited photoresponsive oxidase-like activity, catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidized state TMB (oxTMB) in a short time. Interestingly, 8-hydroxyquinoline (8-HQ) can significantly inhibit the color reaction of TMB oxidation while Cr(VI) can interact specifically with 8-HQ to restore this chromogenic reaction. Based on the above facts, a colorimetric sensing system for detecting Cr(VI) was developed. The sensing system shows a wide linear range, and good selectivity, with a low detection limit of 2.32 nM. Moreover, this sensing system could be successfully applied to the detection of Cr(VI) in lake water, tap water, and sewage with satisfactory results.


Asunto(s)
Colorimetría , Plata , Humanos , Colorimetría/métodos , Ecosistema , Agua , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA