Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Angew Chem Int Ed Engl ; : e202402318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710653

RESUMEN

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. Here, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized via a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which would extend our understanding of DIET and open up new avenue for DIET exploration and applications.

2.
Adv Sci (Weinh) ; 11(13): e2305818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240578

RESUMEN

Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Análisis de Secuencia , Genoma Viral/genética , Metagenoma/genética , Heces
3.
Psychol Med ; 54(2): 359-373, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37376848

RESUMEN

BACKGROUND: Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS: We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS: Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS: These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.


Asunto(s)
Salud Mental , Placer , Adulto , Adolescente , Humanos , Niño , Estudios Longitudinales , Estudios Transversales , Lectura , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición
4.
Nucleic Acids Res ; 52(D1): D1033-D1041, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37904591

RESUMEN

The brain is constituted of heterogeneous types of neuronal and non-neuronal cells, which are organized into distinct anatomical regions, and show precise regulation of gene expression during development, aging and function. In the current database release, STAB2 provides a systematic cellular map of the human and mouse brain by integrating recently published large-scale single-cell and single-nucleus RNA-sequencing datasets from diverse regions and across lifespan. We applied a hierarchical strategy of unsupervised clustering on the integrated single-cell transcriptomic datasets to precisely annotate the cell types and subtypes in the human and mouse brain. Currently, STAB2 includes 71 and 61 different cell subtypes defined in the human and mouse brain, respectively. It covers 63 subregions and 15 developmental stages of human brain, and 38 subregions and 30 developmental stages of mouse brain, generating a comprehensive atlas for exploring spatiotemporal transcriptomic dynamics in the mammalian brain. We also augmented web interfaces for querying and visualizing the gene expression in specific cell types. STAB2 is freely available at https://mai.fudan.edu.cn/stab2.


Asunto(s)
Encéfalo , Bases de Datos Genéticas , Neuronas , Análisis de Expresión Génica de una Sola Célula , Animales , Humanos , Ratones , Atlas como Asunto , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Neuronas/metabolismo , Transcriptoma , Conjuntos de Datos como Asunto
5.
Gut ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38050061

RESUMEN

OBJECTIVE: We aim to compare the effects of proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) on the gut microbiota through longitudinal analysis. DESIGN: Healthy volunteers were randomly assigned to receive either PPI (n=23) or H2RA (n=26) daily for seven consecutive days. We collected oral (saliva) and faecal samples before and after the intervention for metagenomic next-generation sequencing. We analysed intervention-induced alterations in the oral and gut microbiome including microbial abundance and growth rates, oral-to-gut transmissions, and compared differences between the PPI and H2RA groups. RESULTS: Both interventions disrupted the gut microbiota, with PPIs demonstrating more pronounced effects. PPI usage led to a significantly higher extent of oral-to-gut transmission and promoted the growth of specific oral microbes in the gut. This led to a significant increase in both the number and total abundance of oral species present in the gut, including the identification of known disease-associated species like Fusobacterium nucleatum and Streptococcus anginosus. Overall, gut microbiome-based machine learning classifiers could accurately distinguish PPI from non-PPI users, achieving an area under the receiver operating characteristic curve (AUROC) of 0.924, in contrast to an AUROC of 0.509 for H2RA versus non-H2RA users. CONCLUSION: Our study provides evidence that PPIs have a greater impact on the gut microbiome and oral-to-gut transmission than H2RAs, shedding light on the mechanism underlying the higher risk of certain diseases associated with prolonged PPI use. TRIAL REGISTRATION NUMBER: ChiCTR2300072310.

6.
PLoS Genet ; 19(12): e1011112, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150468

RESUMEN

Mendelian randomization (MR) is an effective approach for revealing causal risk factors that underpin complex traits and diseases. While MR has been more widely applied under two-sample settings, it is more promising to be used in one single large cohort given the rise of biobank-scale datasets that simultaneously contain genotype data, brain imaging data, and matched complex traits from the same individual. However, most existing multivariable MR methods have been developed for two-sample setting or a small number of exposures. In this study, we introduce a one-sample multivariable MR method based on partial least squares and Lasso regression (MR-PL). MR-PL is capable of considering the correlation among exposures (e.g., brain imaging features) when the number of exposures is extremely upscaled, while also correcting for winner's curse bias. We performed extensive and systematic simulations, and demonstrated the robustness and reliability of our method. Comprehensive simulations confirmed that MR-PL can generate more precise causal estimates with lower false positive rates than alternative approaches. Finally, we applied MR-PL to the datasets from UK Biobank to reveal the causal effects of 36 white matter tracts on 180 complex traits, and showed putative white matter tracts that are implicated in smoking, blood vascular function-related traits, and eating behaviors.


Asunto(s)
Bancos de Muestras Biológicas , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Herencia Multifactorial , Reproducibilidad de los Resultados , Neuroimagen , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple
7.
J Sex Med ; 21(1): 11-19, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37973403

RESUMEN

BACKGROUND: Sexual function after urethroplasty may be a concern for patients, but there are still some controversies regarding the consequences of nontransecting bulbar urethroplasty (ntBU) in terms of erectile dysfunction (ED). AIM: This meta-analysis aimed to compare the efficacy and safety of ntBU with that of transecting bulbar urethroplasty (tBU). METHODS: The PubMed, Web of Science, Cochrane, and Embase databases were searched and reviewed up to October 31, 2022. Quality evaluation was performed using the Newcastle-Ottawa scale system and Cochrane tools for the nonrandomized and randomized studies, respectively. Baseline characteristics, preoperative information, and postoperative outcomes were collected. OUTCOMES: Outcomes included success rate, ED, overall complication, and maximum urinary flow. RESULTS: Thirteen studies comprising 1683 patients met the inclusion criteria, with 596 and 1087 patients undergoing ntBU and tBU, respectively. The results revealed that compared with the tBU group, the patients who underwent ntBU had a significantly lower incidence of ED, while there were no significant differences in the other perioperative outcomes. In subgroup analysis, the nontransecting anastomotic urethroplasty group had a lower incidence of ED than excision and primary anastomosis, and other perioperative outcomes were similar between the 2 groups. CLINICAL IMPLICATIONS: The results of the study may help clinicians choose procedures that protect sexual function in the treatment of urethral stricture. STRENGTHS AND LIMITATIONS: The strength of this study is that it is, to our knowledge, the first meta-analysis to evaluate the efficacy and safety of ntBU. A limitation is that most of the included studies were retrospective cohort studies. CONCLUSION: ntBU preserves the high efficacy of its transecting counterpart while reducing postoperative ED.


Asunto(s)
Disfunción Eréctil , Estrechez Uretral , Masculino , Humanos , Estrechez Uretral/cirugía , Disfunción Eréctil/etiología , Disfunción Eréctil/cirugía , Disfunción Eréctil/epidemiología , Estudios Retrospectivos , Resultado del Tratamiento , Uretra/cirugía , Procedimientos Quirúrgicos Urológicos Masculinos/efectos adversos , Procedimientos Quirúrgicos Urológicos Masculinos/métodos
8.
Nucleic Acids Res ; 51(20): e105, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843111

RESUMEN

Cytosine base editors (CBEs), which enable precise C-to-T substitutions, have been restricted by potential safety risks, including DNA off-target edits, RNA off-target edits and additional genotoxicity such as DNA damages induced by double-strand breaks (DSBs). Though DNA and RNA off-target edits have been ameliorated via various strategies, evaluation and minimization of DSB-associated DNA damage risks for most CBEs remain to be resolved. Here we demonstrate that YE1, an engineered CBE variant with minimized DNA and RNA off-target edits, could induce prominent DSB-associated DNA damage risks, manifested as γH2AX accumulation in human cells. We then perform deaminase engineering for two deaminases lamprey LjCDA1 and human APOBEC3A, and generate divergent CBE variants with eliminated DSB-associated DNA damage risks, in addition to minimized DNA/RNA off-target edits. Furthermore, the editing scopes and sequence preferences of APOBEC3A-derived CBEs could be further diversified by internal fusion strategy. Taken together, this study provides updated evaluation platform for DSB-associated DNA damage risks of CBEs and further generates a series of safer toolkits with diversified editing signatures to expand their applications.


Asunto(s)
Citosina , Edición Génica , Humanos , ARN/genética , Daño del ADN , ADN/genética , Sistemas CRISPR-Cas
9.
bioRxiv ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37693522

RESUMEN

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

10.
J Psychiatry Neurosci ; 48(5): E345-E356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37673436

RESUMEN

BACKGROUND: A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS: We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS: Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS: The sample size of the GWAS was relatively small. CONCLUSION: Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Mentales , Humanos , Encéfalo/diagnóstico por imagen , Cognición , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Neurobiología
11.
Microbiome ; 11(1): 179, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563687

RESUMEN

BACKGROUND: The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS: We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS: We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Micobioma , Humanos , Anciano , Micobioma/genética , Microbioma Gastrointestinal/genética , Candida , Envejecimiento
12.
Cancer Med ; 12(17): 17822-17834, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548332

RESUMEN

BACKGROUND: Aging is one of the factors leading to cancer. Gut microbiota is related to aging and colorectal cancer (CRC). METHODS: A total of 11 metagenomic data sets related to CRC were collected from the R package curated Metagenomic Data. After batch effect correction, healthy individuals and CRC samples were divided into three age groups. Ggplot2 and Microbiota Process packages were used for visual description of species composition and PCA in healthy individuals and CRC samples. LEfSe analysis was performed for species relative abundance data in healthy/CRC groups according to age. Spearman correlation coefficient of age-differentiated bacteria in healthy individuals and CRC samples was calculated separately. Finally, the age prediction model and CRC risk prediction model were constructed based on the age-differentiated bacteria. RESULTS: The structure and composition of the gut microbiota were significantly different among the three groups. For example, the abundance of Bacteroides vulgatus in the old group was lower than that in the other two groups, the abundance of Bacteroides fragilis increased with aging. In addition, seven species of bacteria whose abundance increases with aging were screened out. Furthermore, the abundance of pathogenic bacteria (Escherichia_coli, Butyricimonas_virosa, Ruminococcus_bicirculans, Bacteroides_fragilis and Streptococcus_vestibularis) increased with aging in CRCs. The abundance of probiotics (Eubacterium_eligens) decreased with aging in CRCs. The age prediction model for healthy individuals based on the 80 age-related differential bacteria and model of CRC patients based on the 58 age-related differential bacteria performed well, with AUC of 0.79 and 0.71, respectively. The AUC of CRC risk prediction model based on 45 disease differential bacteria was 0.83. After removing the intersection between the disease-differentiated bacteria and the age-differentiated bacteria from the healthy samples, the AUC of CRC risk prediction model based on remaining 31 bacteria was 0.8. CRC risk prediction models for each of the three age groups showed no significant difference in accuracy (young: AUC=0.82, middle: AUC=0.83, old: AUC=0.85). CONCLUSION: Age as a factor affecting microbial composition should be considered in the application of gut microbiota to predict the risk of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Microbiota , Humanos , Neoplasias Colorrectales/patología , Bacterias/genética , Envejecimiento
13.
BMC Med ; 21(1): 291, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542243

RESUMEN

BACKGROUND: Comorbidity is the rule rather than the exception for childhood and adolescent onset mental disorders, but we cannot predict its occurrence and do not know the neural mechanisms underlying comorbidity. We investigate if the effects of comorbid internalizing and externalizing disorders on anatomical differences represent a simple aggregate of the effects on each disorder and if these comorbidity-associated cortical surface differences relate to a distinct genetic underpinning. METHODS: We studied the cortical surface area (SA) and thickness (CT) of 11,878 preadolescents (9-10 years) from the Adolescent Brain and Cognitive Development Study. Linear mixed models were implemented in comparative and association analyses among internalizing (dysthymia, major depressive disorder, disruptive mood dysregulation disorder, agoraphobia, panic disorder, specific phobia, separation anxiety disorder, social anxiety disorder, generalized anxiety disorder, post-traumatic stress disorder), externalizing (attention-deficit/hyperactivity disorder, oppositional defiant disorder, conduct disorder) diagnostic groups, a group with comorbidity of the two and a healthy control group. Genome-wide association analysis (GWAS) and cell type specificity analysis were performed on 4468 unrelated European participants from this cohort. RESULTS: Smaller cortical surface area but higher thickness was noted across patient groups when compared to controls. Children with comorbid internalizing and externalizing disorders had more pronounced areal reduction than those without comorbidity, indicating an additive burden. In contrast, cortical thickness had a non-linear effect with comorbidity: the comorbid group had no significant CT differences, while those patient groups without comorbidity had significantly higher thickness compare to healthy controls. Distinct biological pathways were implicated in regional SA and CT differences. Specifically, CT differences were associated with immune-related processes implicating astrocytes and oligodendrocytes, while SA-related differences related mainly to inhibitory neurons. CONCLUSION: The emergence of comorbidity across distinct clusters of psychopathology is unlikely to be due to a simple additive neurobiological effect alone. Distinct developmental risk moderated by immune-related adaptation processes, with unique genetic and cell-specific factors, may contribute to underlying SA and CT differences. Children with the highest risk but lowest resilience, both captured in their developmental morphometry, may develop a comorbid illness pattern.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/epidemiología , Estudio de Asociación del Genoma Completo , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/psicología , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Comorbilidad , Genómica
14.
Genome Med ; 15(1): 56, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488639

RESUMEN

BACKGROUND: Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS: By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS: We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS: Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.


Asunto(s)
Encefalopatías , Humanos , Reproducibilidad de los Resultados , Regiones Promotoras Genéticas , Neuronas , Redes Reguladoras de Genes
15.
Nature ; 619(7968): 112-121, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316654

RESUMEN

Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.


Asunto(s)
Pueblos del Este de Asia , Etnicidad , Variación Genética , Genoma Humano , Genética Humana , Grupos Minoritarios , Humanos , Pueblos del Este de Asia/clasificación , Pueblos del Este de Asia/genética , Etnicidad/genética , Genoma Humano/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta , Genética Humana/normas , Minorías Étnicas y Raciales , Estándares de Referencia , Haplotipos/genética , Eucromatina/genética , Alelos , Reparación del ADN/genética , Queratinas/genética , Queratinas/metabolismo , Longevidad/genética , Inmunidad/genética
16.
Bioinformatics ; 39(39 Suppl 1): i21-i29, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387171

RESUMEN

MOTIVATION: Metagenomic binning methods to reconstruct metagenome-assembled genomes (MAGs) from environmental samples have been widely used in large-scale metagenomic studies. The recently proposed semi-supervised binning method, SemiBin, achieved state-of-the-art binning results in several environments. However, this required annotating contigs, a computationally costly and potentially biased process. RESULTS: We propose SemiBin2, which uses self-supervised learning to learn feature embeddings from the contigs. In simulated and real datasets, we show that self-supervised learning achieves better results than the semi-supervised learning used in SemiBin1 and that SemiBin2 outperforms other state-of-the-art binners. Compared to SemiBin1, SemiBin2 can reconstruct 8.3-21.5% more high-quality bins and requires only 25% of the running time and 11% of peak memory usage in real short-read sequencing samples. To extend SemiBin2 to long-read data, we also propose ensemble-based DBSCAN clustering algorithm, resulting in 13.1-26.3% more high-quality genomes than the second best binner for long-read data. AVAILABILITY AND IMPLEMENTATION: SemiBin2 is available as open source software at https://github.com/BigDataBiology/SemiBin/ and the analysis scripts used in the study can be found at https://github.com/BigDataBiology/SemiBin2_benchmark.


Asunto(s)
Algoritmos , Metagenoma , Análisis por Conglomerados , Metagenómica , Programas Informáticos
17.
Adv Sci (Weinh) ; 10(25): e2302159, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382405

RESUMEN

DNA methylation plays a crucial role in the survival of bacteriophages (phages), yet the understanding of their genome methylation remains limited. In this study, DNA methylation patterns are analyzed in 8848 metagenome-assembled high-quality phages from 104 fecal samples using single-molecule real-time sequencing. The results demonstrate that 97.60% of gut phages exhibit methylation, with certain factors correlating with methylation densities. Phages with higher methylation densities appear to have potential viability advantages. Strikingly, more than one-third of the phages possess their own DNA methyltransferases (MTases). Increased MTase copies are associated with higher genome methylation densities, specific methylation motifs, and elevated prevalence of certain phage groups. Notably, the majority of these MTases share close homology with those encoded by gut bacteria, suggesting their exchange during phage-bacterium interactions. Furthermore, these MTases can be employed to accurately predict phage-host relationships. Overall, the findings indicate the widespread utilization of DNA methylation by gut DNA phages as an evasion mechanism against host defense systems, with a substantial contribution from phage-encoded MTases.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metiltransferasas/genética , Metilación de ADN/genética , ADN , Metagenoma
18.
IEEE J Biomed Health Inform ; 27(8): 4040-4051, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37247318

RESUMEN

Positron emission tomography (PET) with fluorodeoxyglucose (FDG) or florbetapir (AV45) has been proved effective in the diagnosis of Alzheimer's disease. However, the expensive and radioactive nature of PET has limited its application. Here, employing multi-layer perceptron mixer architecture, we present a deep learning model, namely 3-dimensional multi-task multi-layer perceptron mixer, for simultaneously predicting the standardized uptake value ratios (SUVRs) for FDG-PET and AV45-PET from the cheap and widely used structural magnetic resonance imaging data, and the model can be further used for Alzheimer's disease diagnosis based on embedding features derived from SUVR prediction. Experiment results demonstrate the high prediction accuracy of the proposed method for FDG/AV45-PET SUVRs, where we achieved Pearson's correlation coefficients of 0.66 and 0.61 respectively between the estimated and actual SUVR and the estimated SUVRs also show high sensitivity and distinct longitudinal patterns for different disease status. By taking into account PET embedding features, the proposed method outperforms other competing methods on five independent datasets in the diagnosis of Alzheimer's disease and discriminating between stable and progressive mild cognitive impairments, achieving the area under receiver operating characteristic curves of 0.968 and 0.776 respectively on ADNI dataset, and generalizes better to other external datasets. Moreover, the top-weighted patches extracted from the trained model involve important brain regions related to Alzheimer's disease, suggesting good biological interpretability of our proposed method."


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Disfunción Cognitiva/diagnóstico por imagen
19.
Gut Microbes ; 15(1): 2205386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37140125

RESUMEN

Cross-cohort validation is essential for gut-microbiome-based disease stratification but was only performed for limited diseases. Here, we systematically evaluated the cross-cohort performance of gut microbiome-based machine-learning classifiers for 20 diseases. Using single-cohort classifiers, we obtained high predictive accuracies in intra-cohort validation (~0.77 AUC), but low accuracies in cross-cohort validation, except the intestinal diseases (~0.73 AUC). We then built combined-cohort classifiers trained on samples combined from multiple cohorts to improve the validation of non-intestinal diseases, and estimated the required sample size to achieve validation accuracies of >0.7. In addition, we observed higher validation performance for classifiers using metagenomic data than 16S amplicon data in intestinal diseases. We further quantified the cross-cohort marker consistency using a Marker Similarity Index and observed similar trends. Together, our results supported the gut microbiome as an independent diagnostic tool for intestinal diseases and revealed strategies to improve cross-cohort performance based on identified determinants of consistent cross-cohort gut microbiome alterations.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Aprendizaje Automático , Proyectos de Investigación , Metagenoma , Metagenómica/métodos
20.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37114640

RESUMEN

Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.


Asunto(s)
Metagenoma , Metagenómica , Humanos , Análisis de Secuencia de ADN , Bacterias/genética , Tracto Gastrointestinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...