Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 122: 111330, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094673

RESUMEN

The WNT5B ligand regulates the non-canonical wingless-related integration site (WNT)-planar cell polarity (PCP) pathway. However, the detailed mechanism underlying the activity of WNT5B in the WNT-PCP pathway in non-small cell lung cancer (NSCLC) is unclear. In this study, we assessed the clinicopathological significance of WNT5B expression in NSCLC specimens. WNT5B-overexpression and -knockdown NSCLC cell lines were generated in vivo and in vitro, respectively. WNT5B overexpression in NSCLC specimens correlates with advanced tumor node metastasis (TNM) stage, lymph node metastasis, and poor prognosis in patients with NSCLC. Additionally, WNT5B promotes the malignant phenotype of NSCLC cells in vivo and in vitro. Interactions were identified among WNT5B, frizzled3 (FZD3), and disheveled3 (DVL3) in NSCLC cells, leading to the activation of WNT-PCP signaling. The FZD3 receptor initiates DVL3 recruitment to the membrane for phosphorylation in a WNT5B ligand-dependent manner and activates c-Jun N-terminal kinase (JNK) signaling via the small GTPase RAC1. Furthermore, the deletion of the DEP domain of DVL3 abrogated these effects. Overall, we demonstrated a novel signal transduction pathway in which WNT5B recruits DVL3 to the membrane via its DEP domain through interaction with FZD3 to promote RAC1-PCP-JNK signaling, providing a potential target for clinical intervention in NSCLC treatment.

2.
Exp Aging Res ; : 1-15, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012915

RESUMEN

BACKGROUND: Quality of life, social support, and loneliness are common problems among older adults in China , but the relationships among these issues have not been clearly identified. OBJECTIVES: The present study aimed to determine the relationships among Quality of life, social support, and loneliness. METHODS: A total of 560 older adults were randomly selected , the social support rating scale (SSRS), University of California at Los Angeles (UCLA) loneliness scale, and Short-Form 12 (SF-12) were employed to measure their degree of social support, level of loneliness, and quality of life. RESULTS: The average physical component summary (PCS) score was 49.97±16.33, and the average mental component summary (MCS) score was 47.26±11.49. Loneliness plays a partial mediating role between social support and quality of life. CONCLUSION: Loneliness and a lack of social support will affect the quality of life of the older adults. Thus, we need to urgently strengthen the care and support for the older adults and alleviate the loneliness of the older adults in the community.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38906273

RESUMEN

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.

4.
Arch Biochem Biophys ; 758: 110064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897534

RESUMEN

Chemoresistance is one of the major hindrances to many cancer therapies, including esophageal squamous cell carcinoma (ESCC). Ferroptosis, a new programmed cell death, plays an essential role in chemoresistance. IQ-domain GTPase activating protein 1 (IQGAP1) is a scaffold protein and functions as an oncogene in various human malignancies. However, the underlying effect and molecular mechanisms of IQGAP1 on paclitaxel (PTX) resistance and ferroptosis in ESCC remain to be elucidated. In this study, we found that IQGAP1 was highly expressed in ESCC tissues and could as a potential biomarker for diagnosis and predicting the prognosis of ESCC. Functional studies revealed that IQGAP1 overexpression reduced the sensitivity of ESCC cells to PTX by enhancing ESCC cell viability and proliferation and inhibiting cell death, and protected ESCC cells from ferroptosis, whereas IQGAP1 knockdown exhibited contrary effects. Importantly, reductions of chemosensitivity and ferroptosis caused by IQGAP1 overexpression were reversed with ferroptosis inducer RSL3, while the increases of chemosensitivity and ferroptosis caused by IQGAP1 knockdown were reversed with ferroptosis inhibitor ferrostatin-1 (Fer-1) in ESCC cells, indicating that IQGAP1 played a key role in resistance to PTX through regulating ferroptosis. Mechanistically, we demonstrated that IQGAP1 overexpression upregulated the expression of Yes-associated protein (YAP), the central mediator of the Hippo pathway. YAP inhibitor Verteporfin (VP) could reverse the effects of IQGAP1 overexpression on ESCC chemoresistance and ferroptosis. Taken together, our findings suggest that IQGAP1 promotes chemoresistance by blocking ferroptosis through targeting YAP. IQGAP1 may be a novel therapeutic target for overcoming chemoresistance in ESCC.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Paclitaxel , Proteínas Activadoras de ras GTPasa , Humanos , Ferroptosis/efectos de los fármacos , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Paclitaxel/farmacología , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
5.
Aging Dis ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916727

RESUMEN

Endogenous retroviruses (ERVs), a subset of genomic transposable elements (TEs) in a broader sense, have remained latent within mammalian genomes for tens of millions of years. These genetic elements are typically in a silenced state due to stringent regulatory mechanisms. However, under specific conditions, they can become activated, triggering inflammatory responses through diverse mechanisms. This activation has been shown to play a potential role in various neurological disorders, tumors, and cellular senescence. Consequently, the regulation of ERV expression through various methods holds promise for clinical applications in disease treatment. ERVs also engage in interactions with a variety of exogenous viruses, thereby influencing the outcomes of viral infectious diseases. This article comprehensively reviews the pathogenic cascade of ERVs, encompassing activation, inflammation, associated diseases, senescence, and interplay with viruses. Additionally, it outlines therapeutic strategies targeting ERVs with the aim of offering novel research directions for understanding the relationship between ERVs and diseases, along with corresponding treatment modalities.

6.
Nat Commun ; 15(1): 4122, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750027

RESUMEN

Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.


Asunto(s)
Corteza Entorrinal , Neuronas , Navegación Espacial , Corteza Visual , Animales , Corteza Entorrinal/fisiología , Corteza Visual/fisiología , Navegación Espacial/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Vías Visuales/fisiología , Percepción Visual/fisiología
7.
Bioorg Chem ; 148: 107450, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761704

RESUMEN

Here, a series of 3-(6-aminopyridin-3-yl) benzamide derivatives were designed and synthesized. Cell viability assay indicated that most compounds exhibited potent antiproliferative activity against all the tested cancer cells. Among them, compound 7l displayed the best antiproliferative activity particularly in A549 cells, with an IC50 value of 0.04 ± 0.01 µM. RNA-seq analysis was employed to explore the potential pathways related to the antiproliferative activity of compound 7l. The data revealed that 7l exerted antiproliferative activity mainly by regulating cell cycle, DNA replication and p53 signaling pathway. Indeed, compound 7l induced G2/M phase arrest by AURKB transcription inhibition and resulted in cell apoptosis via p53 signaling pathway. Most importantly, compound 7l demonstrated potent antitumor activity in A549 xenograft tumor model. Collectively, 7l might be a promising lead compound for the development of new therapeutic agents for AURKB overexpressed or mutated cancers.


Asunto(s)
Antineoplásicos , Apoptosis , Benzamidas , Puntos de Control del Ciclo Celular , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzamidas/síntesis química , Benzamidas/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Puntos de Control del Ciclo Celular/efectos de los fármacos , Animales , Ratones , Ratones Desnudos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Transcripción Genética/efectos de los fármacos , Ratones Endogámicos BALB C
8.
Cancer Lett ; 589: 216833, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548217

RESUMEN

Understanding the intrinsic mechanisms underpinning cancer metabolism and therapeutic resistance is of central importance for effective nutrition-starvation therapies. Here, we report that Interleukin 1A (IL1A) mRNA and IL-1α protein facilitate glutathione (GSH) synthesis to counteract oxidative stress and resistance against nutrition-starvation therapy in oral squamous cell carcinoma (OSCC). The expression of IL1A mRNA was elevated in the case of OSCC associated with unfavorable clinical outcomes. Both IL1A mRNA and IL-1α protein expression were increased under glucose-deprivation in vitro and in vivo. The transcription of IL1A mRNA was regulated in an NRF2-dependent manner in OSCC cell lines under glucose-deprivation. Moreover, the IL-1α conferred resistance to oxidative stress via GSH synthesis in OSCC cell lines. The intratumoral administration of siRNAs against IL1A mRNA markedly reversed GSH production and sensitized OSCC cells to Anlotinib in HN6 xenograft models. Overall, the current study demonstrates novel evidence that the autocrine IL-1α favors endogenous anti-oxidative process and confers therapeutic resistance to nutrition-starvation in OSCCs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Estrés Oxidativo , Glutatión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral
10.
Brain Topogr ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374489

RESUMEN

Numerous studies utilizing magnetic resonance imaging (MRI) have observed sex and interhemispheric disparities in sulcal morphology, which could potentially underpin certain functional disparities in the human brain. Most of the existing research examines the precentral sulcus comprehensively, with a rare focus on its subsections. To explore the morphology, asymmetry, and sex disparities within the inferior precentral sulcus (IPCS), we acquired 3.0T magnetic resonance images from 92 right-handed Chinese adolescents. Brainvisa was used to reconstruct the IPCS structure and calculate its mean depth (MD). Based on the morphological patterns of IPCS, it was categorized into five distinct types. Additionally, we analyzed four different types of spatial relationships between IPCS and inferior frontal sulcus (IFS). There was a statistically significant sex disparity in the MD of IPCS, primarily observed in the right hemisphere. Females exhibited significantly greater asymmetry in the MD of IPCS compared to males. No statistically significant sex or hemispheric variations were identified in sulcal patterns. Our findings expand the comprehension of inconsistencies in sulcal structure, while also delivering an anatomical foundation for the study of related regions' function.

11.
Adv Wound Care (New Rochelle) ; 13(6): 322-328, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38258794

RESUMEN

Objective: This study is the first prospective within-patient self-controlled research seeking to investigate the safety and efficacy of 595 nm pulsed-dye laser (PDL) for the treatment of cleft-lip scars. Approach: This prospective, randomized, self-controlled study is based on the clinical records of the patients who received laser-assisted treatment due to bilateral cleft-lip scars. The bilateral scars were randomly assigned to the 595 nm PDL group with five consecutive sessions at 2-week intervals or control group in a blinded manner of evaluators, with subsequent follow-up for 6 months after the final treatment. Clinical efficacy and safety outcomes were evaluated by Vancouver Scar Scale (VSS), Patient Scar Assessment Questionnaire (PSAQ), and other objective evaluations. Results: A total of 18 patients were included. The 595 nm PDL-treated sides showed statistically significant improvement in VSS after treatment at follow-up compared with the baseline (p < 0.05). Interestingly, the 595 nm-PDL-treated side achieved significantly better improvement in scar pigmentation and pliability (p < 0.05). Though there was statistically significant difference between two groups (p < 0.05), the gap in overall PSAQ is not obvious. And comparison by area and coloring evaluation (E/M index) also suggests that the responses of scars to treatment by PDL were slightly improved (p < 0.05). Innovation and Conclusion: It is the first time to apply the 595nm PDL for cleft-lip scars. It would be a better choice for the early treatment of red scar with proliferative tendency after cleft-lip surgery.


Asunto(s)
Cicatriz , Labio Leporino , Láseres de Colorantes , Humanos , Femenino , Masculino , Láseres de Colorantes/uso terapéutico , Estudios Prospectivos , Resultado del Tratamiento , Labio Leporino/cirugía , Labio Leporino/complicaciones , Pueblo Asiatico , Adulto , Adolescente , Niño , Terapia por Luz de Baja Intensidad/métodos , Adulto Joven
12.
J Colloid Interface Sci ; 658: 678-687, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134676

RESUMEN

Organic compounds have become an important electrode material for aqueous electrochemical energy storage. However, organic electrodes still face poor performance in aqueous batteries due to insufficient electrochemical activity. In this work, a novel conjugated quinone compound containing a rich carbonyl group was designed. The quinone compound was synthesized by a simple dehydration reaction of pyrene-4,5,9,10-tetrone (PTO) and 1,2-diaminoanthraquinone (1,2-AQ); it contains 4 pyrazines (CN) from AQ and 4 carbonyl groups (CO), as well as a large number of active sites and the excellent conductivity brought by its conjugated structure ensures the high theoretical capacity of PTO-AQ. In the context of aqueous sodium ion batteries (ASIBs), the electrode material known as PTO-AQ exhibits a notable reversible discharge capacity of 117.9 mAh/g when subjected to a current density of 1 A/g; impressively, it maintained a capacity retention rate of 74.3 % even after undergoing 500 charge and discharge cycles, a performance significantly surpassing that of pristine PTO and AQ. Notably, PTO-AQ exhibits a wide operating voltage range (-1.0-0.5 V) and a cycle life of up to 10,000 cycles. In situ Raman and ex situ measurements were used to analyze the structural changes of PTO-AQ during charge and discharge and the energy storage mechanism in NaAC. The effective promotion of Na+ storage brought by a rich carbonyl group was obtained. The structural energy level and electrostatic potential of PTO-AQ were calculated, and the active center distribution of PTO-AQ was obtained. This work serves as a guide for designing high-performance aqueous organic electrode materials that operate across a wide voltage range while also explaining their energy storage mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA