Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 140: 105744, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32353670

RESUMEN

During the operation of the RO system, it's significant to predict the flux change over time. Previous research conducted detailed exploration on the dynamics of RO membrane fouling, and provided a solid database for modelling. In this study, a modified intermediate blocking model with two parameters was proposed to describe the flux change of RO membranes under a huge variety of conditions. Raw data reported by over 20 research groups from 11 different countries was used to validate the feasibility of this model. It proved applicable to describe the flux change of RO membranes fouled by pure organic matter or mixture and tertiary treated wastewater. In order to reveal the relationship between model parameters and foulant concentrations, RO membrane fouling behaviors of typical foulants (sodium alginate (SA), bovine serum albumin (BSA) and mixture) were further investigated. We found that the change of model parameters with SA concentrations was in accordance with Langmuir adsorption isotherm model. Therefore, the model parameters could be calculated by SA concentrations under certain optional conditions, and then the flux change could be predicted by this model. In this way, a novel time-course model was established, which could predict the flux change of RO membranes over time only with SA concentrations. Besides, the synergic effect between SA and BSA on RO membrane fouling was directly quantified.


Asunto(s)
Aguas Residuales , Purificación del Agua , Filtración , Membranas Artificiales , Ósmosis
2.
Water Res ; 173: 115591, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062226

RESUMEN

A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV-vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption.


Asunto(s)
Ozono , Purificación del Agua , Desnitrificación , Membranas Artificiales , Ultrafiltración , Aguas Residuales
3.
Sci Total Environ ; 713: 136673, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31958736

RESUMEN

Membrane fouling is an inevitable disadvantage of the reverse osmosis (RO) process for wastewater reclamation. In order to clarify the development process of membrane fouling, all the fouled membranes along a feed channel of a two-stage industrial-scale RO system for wastewater reclamation (six elements in each stage) were autopsied and analyzed. The water flux and salt rejection efficiency of the fouled membranes at the head and tail were the lowest among 12 elements, thereby indicating more severe fouling on these membranes. In this RO system, most of the organic compounds deposited on the head elements of each stage were mainly composed of proteins, polysaccharides, and fulvic acid. The ATP concentrations of the foulants on the first and twelfth elements were much higher than those of the other elements, suggesting severe biofouling. Although microbes can cause organic fouling owing to extracellular polymeric substances production, no clear correlation was found between organic fouling and biofouling in this study. For example, the ATP concentrations on the second element and seventh element were similar (1.16 ng/cm2 and 1.26 ng/cm2, respectively), thereby suggesting a similar extent of biofouling, but organic fouling of the second element was relatively slight (DOC: 24.8 mg/m2) compared with that of the seventh element (DOC: 46.2 mg/m2). The seventh element (ATP: 1.26 ng/cm2) was more severely biofouled than the eighth element (ATP: 0.15 ng/cm2), but they suffered from the same level of organic fouling (DOC: 46.2 mg/m2 and 47.1 mg/m2, respectively). Approximately 70% of metallic elements, predominantly Fe, were deposited on the first element. Although the concentration of Fe in the feed water was much lower than those of Ca and Mg, the concentration of Fe on the first three elements was significantly higher than that of any other element, suggesting that Fe was more easily deposited on the RO membranes.

4.
Sci Total Environ ; 693: 133579, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31376757

RESUMEN

Biofouling of reverse osmosis (RO) membranes is an inevitable issue in wastewater reclamation and limits the application of RO systems. Chlorine disinfection is widely used as a pretreatment to control biofouling. However, the extracellular polymeric substances (EPS) and cellular inclusions released during chlorine disinfection might also cause membrane fouling. Furthermore, little is known regarding the chlorine resistance of bacterial strains found on fouled RO membranes. In this study, four bacterial strains isolated from fouled RO membranes were used as testing subjects to investigate the bacterial inactivation performance of chlorine disinfection. The effects of chlorine disinfection on the RO membrane fouling potential of these strains were also revealed. The chlorine resistance ability of Sphingopyxis sp. BM1-1 was strongest among the four strains as it secretes the highest amount of EPS per cell. The log inactivation efficiency of this strain was 1-log by 0.2 mg-Cl2/L in 30 min, which was one to three orders of magnitude lower than that of the other strains. Although chlorine disinfection inactivated most bacterial cells (>90%), the reaction with chlorine significantly increased the RO membrane fouling potential of all bacterial solutions. To elucidate the main mechanism behind the increase in the fouling potential, we further investigated the changes in the properties of EPS, and the release of EPS and cellular inclusions during chlorine disinfection. Chlorine disinfection did not significantly affect the RO membrane fouling potential of the EPS secreted by these bacterial strains. However, dissolved organic carbon (DOC), protein, polysaccharide, and DNA concentration of all bacterial solutions increased by one to nine times after chlorine disinfection. These results indicate that large amounts of EPS and cellular inclusions were released into the solutions after the reaction with chlorine, which was the main cause of the increase in RO membrane fouling potential of the bacterial solution after chlorine disinfection.


Asunto(s)
Desinfección/métodos , Eliminación de Residuos Líquidos/métodos , Incrustaciones Biológicas , Cloro , Filtración , Membranas Artificiales , Ósmosis , Aguas Residuales/microbiología
5.
Water Res ; 154: 246-257, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30798179

RESUMEN

In reverse osmosis (RO) system for wastewater reclamation, biofouling is an inevitable issue. Chlorine disinfection is commonly used in pretreatment to control biofouling. Some chlorine-resistant bacteria could survive after chlorine disinfection and the microbial community structure in feed water changes significantly, thus leading to the change of biofouling potential. In this study, the effect of chlorine disinfection on the biofouling of RO membrane was investigated using a laboratory cross-flow RO system. Chlorine disinfection inactivated most bacteria in feed water. However, during the operation of RO system, with the increase of chlorine dosage the flux decline became more severe after a period of operation. The final normalized flux after 21 days was 0.27, 0.26, 0.20, and 0.21 with 0, 1, 5, and 15 mg-Cl2/L chlorine as pretreatment, respectively. After the operation, the numbers of active bacteria in the foulants on the fouled membrane were on the same level regardless of the chlorine dosage, whereas the thickness of the foulants increased with the chlorine dosage significantly. Additionally, the higher total organic carbon concentration indicated more extracellular polymeric substances (EPS) in foulants. Microbial community structure analysis showed that the abundance and the species number of chlorine-resistant bacteria increased significantly with the chlorine dosage. Typical chlorine-resistant bacteria, including Methylobacterium, Pseudomonas, Sphingomonas, and Acinetobacter, were identified as significantly distinctive genera in the foulants after the pretreatment by 15 mg-Cl2/L chlorine. Compared with the bacteria without chlorine disinfection, these remaining bacteria produced more EPS with higher molecular weight, which could be the major contribution to more severe RO membrane fouling after chlorine disinfection.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Cloro , Desinfección , Membranas Artificiales , Ósmosis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...