Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 915: 169915, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190901

RESUMEN

Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Nitrógeno/análisis , Plantas , Fósforo/análisis , Carbono/análisis , China , Pradera
2.
Front Microbiol ; 14: 1214186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601343

RESUMEN

Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.

3.
Front Plant Sci ; 14: 1186406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457335

RESUMEN

Introduction: Understanding the impact of deep groundwater depth on vegetation communities and soil in sand dunes with different underground water tables is essential for ecological restoration and the conservation of groundwater. Furthermore, this understanding is critical for determining the threshold value of groundwater depth that ensures the survival of vegetation. Method: This paper was conducted in a semi-arid region in eastern China, and the effects of deep groundwater depth (6.25 m, 10.61 m, and 15.26 m) on vegetation communities and soil properties (0-200 cm) across three dune types (mobile, semi-fixed, and fixed dunes) were evaluated in a sand ecosystem in the Horqin Sandy Land. Results: For vegetation community, variations in the same species are more significant at different groundwater depths. For soil properties, groundwater depth negatively influences soil moisture, total carbon, total nitrogen, available nitrogen, available phosphorus concentrations, and soil pH. Besides, groundwater depth also significantly affected organic carbon and available potassium concentrations. In addition, herb species were mainly distributed in areas with lower groundwater depth, yet arbor and shrub species were sparsely distributed in places with deeper groundwater depth. Discussion: As arbor and shrub species are key drivers of ecosystem sustainability, the adaptation of these dominant species to increasing groundwater depth may alleviate the negative effects of increasing groundwater depth; however, restrictions on this adaptation were exceeded at deeper groundwater depth.

4.
Sci Total Environ ; 884: 163902, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137371

RESUMEN

Plant elemental composition and stoichiometry are useful tools for understanding plant nutrient strategy and biogeochemical cycling in terrestrial ecosystems. However, no studies have examined how plant leaf carbon (C), nitrogen (N), and phosphorus (P) stoichiometry responds to abiotic and biotic factors in the fragile desert-grassland ecological transition zone in northern China. Then a systematically designed 400 km transect was established to investigate the C, N, and P stoichiometry of 870 leaf samples of 61 species from 47 plant communities in the desert-grassland transition zone. At the individual level, plant taxonomic groups and life forms rather than climate or soil factors determined the leaf C, N, and P stoichiometry. In addition, leaf C, N, and P stoichiometry (except leaf C) was significantly influenced by soil moisture content in the desert-grassland transition zone. At the community level, leaf C content showed a considerable interspecific variation (73.41 %); however, the variation in leaf N and P content, as well as C:N and C:P ratios, was mainly due to intraspecific variation, which was in turn driven by soil moisture. We suggested that intraspecific trait variation played a key role in regulating community structure and function to enhance the resistance and resilience of plant communities to climate change in the desert-grassland transition zone. Our results highlighted the role of soil moisture content as a critical parameter for modeling the biogeochemical cycling in dryland plant-soil systems.


Asunto(s)
Ecosistema , Pradera , Hojas de la Planta/química , Plantas/química , China , Nitrógeno/análisis , Fósforo/análisis , Suelo/química
5.
Front Microbiol ; 14: 1013570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051518

RESUMEN

The plant and soil microbial communities are influenced by variability in environmental conditions (e.g., nitrogen addition); however, it is unclear how long-term nitrogen addition and litter manipulation affect soil microbial communities in a semiarid sandy grassland. Therefore, we simulated the impact of N addition and litter manipulation (litter removal, litter doubling) on plant and soil microbial communities in Horqin grassland, northern China through an experiment from 2014 to 2019. Our results revealed that in the case of non-nitrogen (N0), litter manipulation significantly reduced vegetation coverage (V) (p < 0.05); soil bacterial communities have higher alpha diversity than that of the fungi, and the beta diversity of soil fungi was higher than that of the bacteria; soil microbial alpha diversity was significantly decreased by nitrogen addition (N10) (p < 0.05); N addition and litter manipulation had significantly interactive influences on soil microbial beta diversity, and litter manipulation (C0 and C2) had significantly decreased soil microbial beta diversity (p < 0.05) in the case of nitrogen addition (N10) (p < 0.05). Moreover, bacteria were mostly dominated by the universal phyla Proteobacteria, Actinobacteria, and Acidobacteria, and fungi were only dominated by Ascomycota. Furthermore, the correlation analysis, redundancy analysis (RDA), and variation partitioning analysis indicated that the soil fungi community was more apt to be influenced by plant community diversity. Our results provide evidence that plant and soil microbial community respond differently to the treatments of the 6-year N addition and litter manipulation in a semiarid sandy land.

6.
Sci Total Environ ; 861: 160654, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36473666

RESUMEN

Soil microbe diversity plays a key role in dryland ecosystem function under global climate change, yet little is known about how plant-soil microbe relationships respond to climate change. Altered precipitation patterns strongly shape plant community composition in deserts and steppes, but little research has demonstrated whether plant biodiversity attributes mediate the response of soil microbial diversity to long- and short-term precipitation changes. Here we used a comparative study to explore how altered precipitation along the natural and experimental gradients affected associations of soil bacterial and fungal diversity with plant biodiversity attributes (species, functional and phylogenetic diversity) and soil properties in desert-shrub and steppe-grass communities. We found that along both gradients, increasing precipitation increased soil bacterial and fungal richness in the desert and soil fungal richness in the steppe. Soil bacterial richness in the steppe was also increased by increasing precipitation in the experiment but was decreased along the natural gradient. Plant biodiversity and soil properties explained the variations in soil bacterial and fungal richness from 43 % to 96 % along the natural gradient and from 19 to 46 % in the experiment. Overall, precipitation effects on soil bacterial or fungal richness were mediated by plant biodiversity attributes (species richness and plant height) or soil properties (soil water content) along the natural gradient but were mediated by plant biodiversity attributes (functional or phylogenetic diversity) in the experiment. These results suggest that different mechanisms are responsible for the responses of soil bacterial and fungal diversity to long- and short-term precipitation changes. Long- and short-term precipitation changes may modify plant biodiversity attribute effects on soil microbial diversity in deserts and steppes, highlighting the importance of precipitation changes in shaping relationships between plant and soil microbial diversity in water-limited areas.


Asunto(s)
Ecosistema , Suelo , Microbiología del Suelo , Filogenia , Biodiversidad , Plantas , Bacterias , Agua
7.
Sci Total Environ ; 857(Pt 1): 159367, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36240924

RESUMEN

The change of plant biodiversity caused by resource-enhancing global changes has greatly affected grassland productivity. However, it remains unclear how multi-resource enrichment induces the effects of multifaceted biodiversity on grassland productivity under different site resource constraints. We conducted a multiple resource addition (MRA) experiment of water and nutrients at three sites located along a resource gradient in northern China. This allowed us to assess the response of aboveground net primary productivity (ANPP), species (species richness and plant density), functional (functional richness and community-weighted mean of traits) and phylogenetic (phylogenetic richness) diversity to increasing number of MRA. We used structural equation model (SEM) to examine the direct and indirect effects of MRA and multifaceted biodiversity on ANPP. The combined addition of the four resources increased ANPP at all three sites. But with increasing number of MRA, biodiversity varied at the three sites. At the high resource constraint site, species richness, plant density and leaf nitrogen concentration (LNC) increased. At the medium resource constraint site, plant height and LNC increased, leaf dry matter content (LDMC) decreased. At the low resource constraint site, species, functional and phylogenetic richness decreased, and height increased. The SEM showed that MRA increased ANPP directly at all three sites, and indirectly by increasing plant density at the high constraint site and height at the medium constraint site. Independent of MRA, ANPP was affected by height at the high resource constraint site and LNC at the low resource constraint site. Our results illustrate that multi-resource addition positively affects productivity, while affects biodiversity depending on site resource constraint. The study highlights that site resource constraint conditions need to be taken into consideration to better predict grassland structure and function, particularly under the future multifaceted global change scenarios.


Asunto(s)
Biodiversidad , Pradera , Plantas , Biomasa , Ecosistema , Filogenia , China , Densidad de Población
8.
Environ Sci Pollut Res Int ; 30(9): 24319-24328, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334210

RESUMEN

Extreme droughts strongly impact grassland ecology, both functionally and structurally. However, a comprehensive understanding of the drought impacts on the ecosystem stability is critical for its sustainable development under changing climate. We experimentally report the impact of extreme drought on the temporal stability of aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) in a desert steppe of northern China. The relative importance evaluation of extreme drought, soil properties, species asynchrony, taxonomic, functional, and phylogenetic diversity was performed using structural equation modeling (SEM) to measure the temporal ANPP and BNPP stabilities. Our findings suggested that extreme drought decreased BNPP stability but did not affect ANPP stability. Extreme drought reduced taxonomic and phylogenetic diversity, ANPP, and soil water content but did not affect species asynchrony, functional diversity, or BNPP. Species richness, Shannon-Wiener index, and soil water content were positively correlated with BNPP stability. The SEM results showed a drought-mediated indirect weakening of BNPP stability via modification of species richness. Asynchrony of species unrelated to drought, however, directly affected ANPP stability. The mechanisms underlying the response determination of ANPP and BNPP stability to extreme drought in desert steppe varied notably. Depending on the species asynchrony, ANPP reduced by extreme drought could maintain higher stability. However, extreme drought lowered BNPP stability by altering species richness.


Asunto(s)
Sequías , Ecosistema , Filogenia , China , Agua , Suelo , Pradera
9.
BMC Plant Biol ; 22(1): 514, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36329386

RESUMEN

BACKGROUND: Grazing disturbance usually affects floral display and pollination efficiency in the desert steppe, which may cause pollen limitation in insect-pollinated plants. Effective pollination is essential for the reproductive success of insect-pollinated plants and insufficient pollen transfer may result in pollen limitation. Caragana microphylla Lam is an arid region shrub with ecological importance. Few studies have been conducted on how grazing disturbance influences pollen limitation and pollination efficiency of C. microphylla. Here, we quantify the effect of different grazing intensities on floral display, pollinator visitation frequency and seed production in the Urat desert steppe. RESULTS: In C. microphylla, supplemental hand pollination increased the seed set, and pollen limitation was the predominant limiting factor. As the heavy grazing significantly reduced the seed set in plants that underwent open-pollination, but there was no significant difference in the seed set between plants in the control plots and plants in the moderate grazing plots. Furthermore, there was a higher pollinator visitation frequency in plants in the control plots than in plants in the heavy grazing plots. CONCLUSIONS: We found that pollinator visitation frequency was significantly associated with the number of open flowers. Our findings also demonstrated that seed production is associated with pollinator visitation frequency, as indicated by increased seed production in flowers with higher pollinator visitation frequency. Therefore, this study provides insight into the effect of different grazing intensities on floral display that are important for influencing pollinator visitation frequency and pollination efficiency in desert steppes.


Asunto(s)
Flores , Herbivoria , Insectos , Polen , Polinización , Animales , Flores/fisiología , Insectos/fisiología , Plantas/parasitología , Polinización/fisiología , Clima Desértico , Herbivoria/fisiología
10.
Front Plant Sci ; 13: 756950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812936

RESUMEN

The frequency and intensity of extreme precipitation events and severe drought are predicted to increase in semiarid areas due to global climate change. Plant morphological traits can reflect plant responses to a changing environment, such as altered precipitation or drought patterns. In this study, we examined the response of morphological traits of root, stem, leaf and reproduction meristems of annual herbaceous species to altered precipitation and drought patterns in a semiarid sandy grassland. The study involved a control treatment (100% of background precipitation) and the following six altered precipitation treatments: (1) P(+): precipitation increased by 30%, (2) P(++): precipitation increased by 60%, (3) P(-): precipitation decreased by 30%, (4) P(--): precipitation decreased by 60%, (5) drought 1 (D1): 46-day drought from May 1st to June 15th, and (6) drought 2 (D2): 46-day drought from July 1st to August 15th. P(++) significantly increased root length, flower length-to-width ratio, both P(+) and P(++) significantly increased stem length and flower number in the plant growing seasons, while all of them decreased under P(-) and P(--). The annual herbaceous plants marginally increased the number of second-level stem branches and stem diameter in order to better resist the severe drought stress under P(--). P(+) and P(++) increased the root, stem, leaf, and flower dry weight, with the flower dry weight accounting for a larger proportion than the other aboveground parts. Under D2, the plants used the limited water resources more efficiently by increasing the root-to-shoot ratio compared with P(-), P(--) and D1, which reflects biomass allocation to belowground increased. The linear mixed-effects models and redundancy analysis showed that the root-to-shoot ratio and the dry weight of various plant components were significantly affected by morphological traits and altered precipitation magnitude. Our results showed that the herbaceous species have evolved morphological trait responses that allow them to adapt to climate change. Such differences in morphological traits may ultimately affect the growing patterns of annual herbaceous species, enhancing their drought-tolerant capacity in semiarid sandy grassland during the ongoing climate change.

11.
Front Microbiol ; 13: 1074841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704553

RESUMEN

Soil microbial diversity, composition, and function are sensitive to global change factors. It has been predicted that the temperature and precipitation will increase in northern China. Although many studies have been carried out to reveal how global change factors affect soil microbial biomass and composition in terrestrial ecosystems, it is still unexplored how soil microbial diversity and composition, especially in microbial functional genes, respond to increasing precipitation and warming in a semiarid grassland of northern China. A field experiment was established to simulate warming and increasing precipitation in a temperate semiarid grassland of the Horqin region. Soil bacterial (16S) and fungal (ITS1) diversity, composition, and functional genes were analyzed after two growing seasons. The result showed that warming exerted negative effects on soil microbial diversity, composition, and predicted functional genes associated with carbon and nitrogen cycles. Increasing precipitation did not change soil microbial diversity, but it weakened the negative effects of simulated warming on soil microbial diversity. Bacterial and fungal diversities respond consistently to the global change scenario in semiarid sandy grassland, but the reasons were different for bacteria and fungi. The co-occurrence of warming and increasing precipitation will alleviate the negative effects of global change on biodiversity loss and ecosystem degradation under a predicted climate change scenario in a semiarid grassland. Our results provide evidence that soil microbial diversity, composition, and function changed under climate change conditions, and it will improve the predictive models of the ecological changes of temperate grassland in future climate change scenarios.

12.
Front Plant Sci ; 12: 733268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868115

RESUMEN

Extensive studies have shown that the success of invasive plants in large environmental gradients can be partly attributed to related factors, including phenotypic plasticity and rapid evolution. To enhance their ability to compete and invade, invasive plants often show higher morphological and physiological plasticity to adapt to different habitat conditions. In the past two decades, invasive species have expanded to some new habitats in North and Northwest China, including arid oasis agricultural zones, which are disturbed by human activities, and the ecosystem itself is very fragile. To evaluate the ecological adaptability of invasive plants widely distributed in North and Northwest China, we studied the physiological response and tolerance mechanism of different geographical populations of Solanum rostratum Dunal to different drought-stress gradients in extremely arid regions (Xinjiang population) and semi-arid regions (Inner Mongolia population). The results showed that with the aggravation of drought stress, S. rostratum from different geographical populations adopted different physiological mechanisms to drought stress. Xinjiang population was mostly affected by root/shoot ratio and chlorophyll fluorescence characteristics, showing higher plasticity in the net and total photosynthetic rates, while the Inner Mongolia population mainly relied on the accumulation of osmotic adjustment substances, higher leaf dry matter content, and increased malondialdehyde to cope with drought stress. Based on these results, we concluded that the physiological responses of S. rostratum invading different habitats in northern China to drought stress were significantly different. The drought resistance of the Xinjiang population was higher than that of the Inner Mongolia population. In general, S. rostratum can be widely adapted to both harsh and mild habitats through phenotypic plasticity, threatening agricultural production and ecological environment security in northern China.

13.
BMC Plant Biol ; 21(1): 426, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537013

RESUMEN

BACKGROUND: Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey. is an arid region shrub with ecological importance. We explored the pollen limitation and seed set of Hedysarum scoparium in fragmented and restored environments, and examined whether pollen limitation is a significant limiting factor for seed set. We also compared floral traits and pollinator visitation between both habitats, and we determined the difference of floral traits and pollinators influenced reproductive success in Hedysarum scoparium. RESULTS: Our results indicated that supplementation with pollen significantly increased seed set per flower, which is pollen-limited in this species. Furthermore, there was greater seed set of the hand cross-pollination group in the restored habitat compared to the fragmented environment. More visits by Apis mellifera were recorded in the restored habitats, which may explain the difference in seed production between the fragmented and restored habitats. CONCLUSIONS: In this study, a positive association between pollinator visitation frequency and open flower number was observed. The findings of this study are important for experimentally quantifying the effects of floral traits and pollinators on plant reproductive success in different habitats.


Asunto(s)
Fabaceae/fisiología , Flores/fisiología , Polen/fisiología , Animales , China , Ecosistema , Polinización , Semillas/crecimiento & desarrollo
14.
Sci Rep ; 11(1): 18663, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545147

RESUMEN

Drought resistance of psammophyte determines survival and growth, but their responses to drought are not well understood. We conducted a pot experiment to study how physiological characteristics respond to drought and rehydration. We found that watering to 60-65% of field capacity (the control) provided more water than was required by Agriophyllum squarrosum and its leaves became yellow and slightly wilted. The total chlorophyll content and Fm (maximum fluorescence after dark adaptation) in control were lower than in the drought treatment, and both decreased after rehydration. With increasing drought duration and intensity, the relative water content (RWC), chlorophyll content, Fm, and the quantum efficiency of photosystem II (Fv/Fm) of Setaria viridis decreased, but malondialdehyde and membrane permeability increased. During the late drought, the activities of three antioxidant enzymes in A. squarrosum increased to prevent membrane lipid peroxidation; for S. viridis, only peroxidase and superoxide dismutase activities increased. After rehydration, RWC of both species increased, but Fv/Fm of A. squarrosum and Fm of S. viridis did not recover under severe drought. Our research illustrated that A. squarrosum is better adapted to arid environment than S. viridis, but the high soil moisture content is not conducive to normal growth of A. squarrosum.


Asunto(s)
Amaranthaceae/metabolismo , Setaria (Planta)/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica/fisiología , Amaranthaceae/crecimiento & desarrollo , Amaranthaceae/fisiología , Antioxidantes/metabolismo , Clorofila , Conservación de los Recursos Naturales/métodos , Sequías , Restauración y Remediación Ambiental/métodos , Mongolia , Peroxirredoxinas/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Setaria (Planta)/fisiología , Suelo/química , Agua/análisis
15.
BMC Ecol Evol ; 21(1): 106, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074246

RESUMEN

BACKGROUND: Increasing drought induced by global climate changes is altering the structure and function of grassland ecosystems. However, there is a lack of understanding of how drought affects the trade-off of above- and belowground biomass in desert steppe. We conducted a four-year (2015-2018) drought experiment to examine the responses of community above-and belowground biomass (AGB and BGB) to manipulated drought and natural drought in the early period of growing season (from March to June) in a desert steppe. We compared the associations of drought with species diversity (species richness and density), community-weighted means (CWM) of five traits, and soil factors (soil Water, soil carbon content, and soil nitrogen content) for grass communities. Meanwhile, we used the structural equation modeling (SEM) to elucidate whether drought affects AGB and BGB by altering species diversity, functional traits, or soil factors. RESULTS: We found that manipulated drought affected soil water content, but not on soil carbon and nitrogen content. Experimental drought reduced the species richness, and species modified the CWM of traits to cope with a natural drought of an early time in the growing season. We also found that the experimental and natural drought decreased AGB, while natural drought increased BGB. AGB was positively correlated with species richness, density, CWM of plant height, and soil water. BGB was negatively correlated with CWM of plant height, CWM of leaf dry matter content, and soil nitrogen content, while was positively correlated with CWM of specific leaf area, CWM of leaf nitrogen content, soil water, and soil carbon content. The SEM results indicated that the experimental and natural drought indirectly decreased AGB by reducing species richness and plant height, while natural drought and soil nitrogen content directly affected BGB. CONCLUSIONS: These results suggest that species richness and functional traits can modulate the effects of drought on AGB, however natural drought and soil nitrogen determine BGB. Our findings demonstrate that the long-term observation and experiment are necessary to understand the underlying mechanism of the allocation and trade-off of community above-and belowground biomass.


Asunto(s)
Sequías , Ecosistema , Biomasa , Estaciones del Año , Suelo
16.
Front Plant Sci ; 12: 778547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185947

RESUMEN

Annual species show traits, such as shortleaf lifetimes, higher specific leaf area, and leaf nutrient concentrations, that provided a more rapid resource acquisition compared to perennials. However, the comparison of root traits between the annuals and perennials is extremely limited, as well as the trade-offs of leaf and fine root traits, and resource allocation between leaf and root, which may provide insight into the mechanism of species changes in arid and semi-arid areas. With lab analysis and field observation, 12 traits of leaf and fine root of 54 dominant species from Horqin Sandy Land, Northeastern China were measured. The organization of leaf and fine root traits, and coordination between leaf and fine root traits of annual and perennial plants were examined. Results showed that there were differences between annuals and perennials in several leaves and fine root traits important in resource acquisition and conservation. Annuals had higher leaf area (LA), specific LA (SLA), and specific root length (SRL) but lower leaf dry-matter content (LDMC), leaf tissue density (LTD), leaf carbon concentration (LC), and fine root dry-matter content (FRDMC) than perennials. Leaf nitrogen (LN) concentration and fine root nitrogen concentration (FRN) were negatively related to LTD and FRDMC in annuals, while FRN was positively related to FRTD and fine root carbon concentration (FRC), and LA was positively related to LN in perennials. These implied that annuals exhibited tough tissue and low palatability, but perennials tend to have smaller leaves to reduce metabolism when N is insufficient. Annuals showed significant positive correlations between FRC/FRDMC and LDMC/LTD/LC, suggesting a proportional allocation of photosynthate between leaf and fine root. In perennials, significant negative correlations were detected between LN, LC, and SRL, fine root tissue density (FRTD), as well as between LA and FRTD/FRC. These indicated that perennials tend to allocate more photosynthate to construct a deeper and rigid roots system to improve resource absorption capacity in resource-limited habitats. Our findings suggested that annuals and perennials differed considerably in terms of adaptation, resource acquisition, and allocation strategies, which might be partly responsible for species changes in desertified grasslands. More broadly, this work might be conducive to understand the mechanism of species changes and could also provide support to the management and restoration of desertified grassland in arid and semi-arid areas.

17.
Sci Rep ; 10(1): 14962, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32895404

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Total Environ ; 749: 141613, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32836130

RESUMEN

The number of livestock per unit area is commonly used as a proxy of grazing pressure in both experimental studies and grassland management. However, this practice ignores the impact of landform heterogeneity on the spatial distribution of grazing pressure, leading to localized patches of degraded grassland. The spatial distribution of actual grazing density thus needs to be examined. Owing to the corresponding changes in resource availability and energy consumption as livestock move across an elevation gradient, we predict that livestock will preferentially use low-land and that different temporal patterns of grazing pressure will occur in the contrasting landforms. GPS location data and a machine learning technique were used to identify the seasonal pattern and the factors driving grazing pressure on a fenced ranch. Over both low-land and sand-dune landforms, the proportion of time that livestock spent on foraging increased from 63% in July to 67% in August and 69% in September, and non-foraging behavior decreased correspondingly. In low-land, the log-transformed average foraging density significantly increased from 0.61 (i.e., total foraging behaviors in 5 days measured at 50-s intervals per 10 × 10 m grid) in July to 0.66 in August and 0.88 in September, whereas there was no significant change on sand-dunes. From July to September, the relative area of low-land foraged by cattle accounted for 31%, 35%, and 36%, respectively, and in sand-dunes the proportions increased from 45% to 47% to 51%. In low-land, the foraging density was negatively correlated with biomass (P = .07), total digestible nutrients (P < .05), and crude protein (P = .06) and positively correlated with acid detergent fiber (P < .05), whereas no such relationships were observed in sand-dunes. Our results indicate that topographic features should be considered when managing livestock, especially during periods with adverse conditions of herbage quality and quantity.


Asunto(s)
Ambiente , Ganado , Animales , Biomasa , Bovinos , China , Pradera , Estaciones del Año
19.
Plants (Basel) ; 9(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759799

RESUMEN

Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6-8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land.

20.
Front Plant Sci ; 11: 961, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670344

RESUMEN

Artemisia halodendron Turcz. ex Besser occurs following the appearance of a pioneer species, Agriophyllum squarrosum (L.) Moq., with the former replacing the latter during the naturally vegetation succession in sandy dune regions in China. A previous study revealed that the foliage litter of A. halodendron had strong negative allelopathic effects on germination of the soil seed bank and on the seedling growth. However, whether this allelopathic effect varies with litter types and with the identity of plant species has not yet been studied. We, therefore, carried out a seed germination experiment to determine the allelopathic effects of three ltter types of A. halodendron (roots, foliage, and stems) on seed germination of six plant species that progressively occur along a successional gradient in the semi-arid grasslands in the Horqin Sandy Land of northeastern China. In line with our expectation, we found that the early-successional species rather than the late-successional species were negatively affected by A. halodendron and that the allelopathic effects on seed germination increase with increasing concentration of litter extracts, irrespective of litter types. Our study evidenced the negative allelopathic effects of A. halodendron on the species replacement and on the community composition during dune stabilization in the Horqin Sandy Land. Further studies are needed to better understand the successional process and thus to promote the vegetation restoration in that sandy dune region as A. halodendron itself disappeared also during the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA