Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003229

RESUMEN

Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.


Asunto(s)
Gotas Lipídicas , Lipólisis , Lipólisis/fisiología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Lipasa/metabolismo , Lípidos , Autofagia/fisiología
2.
PeerJ ; 11: e15786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701828

RESUMEN

Background: Acute kidney injury (AKI) is a common and serious medical condition with high morbidity and mortality. Recent research has highlighted ferroptosis, a novel form of programmed cell death, as a potential therapeutic target in mitigating renal tubular injury in AKI. Ferrostatin-1, a specific ferroptosis inhibitor, has been demonstrated to prevent renal injury through ferroptosis inhibition. Methods: Utilizing a murine AKI model, we investigated the effects of Ferrostatin-1 by administering it post-injury. Through high-throughput sequencing and pathological analysis, we focused on the critical role of ferroptosis-related pathways in the treatment. Results: Ferrostatin-1 post-conditioning effectively mitigated oxidative damage and reduced iron content associated with AKI. Additionally, critical ferroptosis-related proteins, such as GPX4, SLC7A11, NRF2, and FTH1, exhibited increased expression levels. In vitro, Ferrostatin-1 treatment of HK-2 cells significantly diminished lipid peroxidation and iron accumulation. Furthermore, Ferrostatin-1 was found to downregulate the PI3K signalling pathway. Conclusion: Ferrostatin-1 acted as a potential ferroptosis inhibitor with the capacity to enhance antioxidant defences. This study suggests that Ferrostatin-1 could serve as a promising novel strategy for improving the treatment of AKI and promoting recovery from the condition.


Asunto(s)
Lesión Renal Aguda , Ferritinas , Animales , Ratones , Hierro , Ciclohexilaminas/farmacología , Lesión Renal Aguda/tratamiento farmacológico
3.
New Phytol ; 238(5): 1889-1907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36942955

RESUMEN

Alternative splicing of pre-mRNAs is crucial for plant growth and development. Serine/arginine-rich (SR) proteins are a conserved family of RNA-binding proteins that are critical for both constitutive and alternative splicing. However, how phosphorylation of SR proteins regulates gene transcription and alternative splicing during plant development is poorly understood. We found that the Arabidopsis thaliana L. SR protein-specific kinase II family proteins (SRPKIIs) play an important role in plant development, including flowering. SRPKIIs regulate the phosphorylation status of a subset of specific SR proteins, including SR45 and SC35, which subsequently mediates their subcellular localization. A phospho-dead SR45 mutant inhibits the assembly of the apoptosis-and splicing-associated protein complex and thereby upregulates the expression of FLOWERING LOCUS C (FLC) via epigenetic modification. The splicing efficiency of FLC introns was significantly increased in the shoot apex of the srpkii mutant. Transcriptomic analysis revealed that SRPKIIs regulate the alternative splicing of c. 400 genes, which largely overlap with those regulated by SR45 and SC35-SCL family proteins. In summary, we found that Arabidopsis SRPKIIs specifically affect the phosphorylation status of a subset SR proteins and regulate the expression and alternative splicing of FLC to control flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Empalme Alternativo/genética , Arabidopsis/metabolismo , Fosforilación , Expresión Génica , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768702

RESUMEN

ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton (Gossypium spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within G. arboretum, G. raimondii, G. hirsutum and G. barbadense, separately. The above ABCGs could be divided into four groups (Ia, Ib, Ic, II). Some ABCG genes such as GhABCG15, whose homologous gene transports cuticular lipid in Arabidopsis, was preferentially expressed in the development of fiber. A weighted gene co-expression network analysis (WGCNA) demonstrated that GhABCG expression was significantly associated with the amount of 16-Hydroxypalmitate (a main component of cutin precursor) in cotton fibers. Further, silencing of GhABCG15 by virus-induced gene silencing (VIGS) in cotton generated brightened and crinkled leaves as well as reduced thickness of cuticle and increased permeability. Chemical composition analysis showed the cutin content in GhABCG15-silenced leaves had decreased while the wax content had increased. Our results provide an insight for better understanding of the role of the Gossypium ABCG family and revealed the essential role of GhABCGs in cotton cutin formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Gossypium/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Arabidopsis/genética , Fibra de Algodón , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes
5.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077124

RESUMEN

Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Arachis/metabolismo , Perfilación de la Expresión Génica , Fitomejoramiento , Semillas/metabolismo , Transcriptoma
6.
Front Plant Sci ; 13: 909527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837468

RESUMEN

Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.

7.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682805

RESUMEN

Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.


Asunto(s)
Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Brassicaceae/metabolismo , Ecotipo , Regulación de la Expresión Génica de las Plantas , Proteómica , Estrés Fisiológico , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628539

RESUMEN

Quinoa is a cold-resistant and nutrient-rich crop. To decipher the cold stress response of quinoa, the full-length transcriptomes of the cold-resistant quinoa variety CRQ64 and the cold-sensitive quinoa variety CSQ5 were compared. We identified 55,389 novel isoforms and 6432 novel genes in these transcriptomes. Under cold stress, CRQ64 had more differentially expressed genes (DEGs) and differentially alternative splicing events compared to non-stress conditions than CSQ5. DEGs that were specifically present only in CRQ64 were significantly enriched in processes which contribute to osmoregulation and ROS homeostasis in plants, such as sucrose metabolism and phenylpropanoid biosynthesis. More genes with differential alternative splicing under cold stress were enriched in peroxidase functions in CRQ64. In total, 5988 transcription factors and 2956 long non-coding RNAs (LncRNAs) were detected in this dataset. Many of these had altered expression patterns under cold stress compared to non-stress conditions. Our transcriptome results demonstrate that CRQ64 undergoes a wider stress response than CSQ5 under cold stress. Our results improved the annotation of the quinoa genome and provide new insight into the mechanisms of cold resistance in quinoa.


Asunto(s)
Chenopodium quinoa , Respuesta al Choque por Frío , Empalme Alternativo/genética , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Respuesta al Choque por Frío/genética , Factores de Transcripción/metabolismo , Transcriptoma
9.
Front Plant Sci ; 13: 866063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463436

RESUMEN

Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.

10.
Front Plant Sci ; 12: 754982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630498

RESUMEN

Autophagy is a ubiquitous process used widely across plant cells to degrade cellular material and is an important regulator of plant growth and various environmental stress responses in plants. The initiation and dynamics of autophagy in plant cells are precisely controlled according to the developmental stage of the plant and changes in the environment, which are transduced into intracellular signaling pathways. These signaling pathways often regulate autophagy by mediating TOR (Target of Rapamycin) kinase activity, an important regulator of autophagy initiation; however, some also act via TOR-independent pathways. Under nutrient starvation, TOR activity is suppressed through glucose or ROS (reactive oxygen species) signaling, thereby promoting the initiation of autophagy. Under stresses, autophagy can be regulated by the regulatory networks connecting stresses, ROS and plant hormones, and in turn, autophagy regulates ROS levels and hormone signaling. This review focuses on the latest research progress in the mechanism of different external signals regulating autophagy.

11.
Gene ; 791: 145722, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34010708

RESUMEN

Plant height is a fundamentally crucial agronomic trait to control crop growth and high yield cultivation. Several studies have been conducted on the understanding ofmolecular genetic bases of plant height in model plants and crops. However, the molecular mechanism underlying peanut plant height development is stilluncertain. In the present study, we created a peanut mutant library by fast neutron irradiation using peanut variety SH13 and identified a semi-dwarf mutant 1 (sdm1). At 84 DAP (days after planting), the main stem of sdm1 was only about 62% of SH13. The internode length of sdm1 hydroponic seedlings was found significantly shorter than that of SH13 at 14 DAP. In addition, the foliar spraying of exogenous IAA could partially restore the semi-dwarf phenotype of sdm1. Transcriptome data indicated that the differentially expressed genes (DEGs) between sdm1 and SH13 significantly enriched in diterpenoid biosynthesis, alpha-linolenic acid metabolism, brassinosteroid biosynthesis, tryptophan metabolism and plant hormone signal transduction. The expression trend of most of the genes involved in IAA and JA pathway showed significantly down- and up- regulation, which may be one of the key factors of the sdm1 semi-dwarf phenotype. Moreover, several transcription factorsand cell wall relatedgenes were expressed differentially between sdm1 and SH13. Conclusively, this research work not only provided important clues to unveil the molecular mechanism of peanut plant height regulation, but also presented basic materials for breeding peanut cultivars with ideal plant height.


Asunto(s)
Arachis/crecimiento & desarrollo , Arachis/genética , Regulación de la Expresión Génica de las Plantas/genética , Biometría/métodos , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Fenotipo , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , RNA-Seq/métodos , Plantones/genética , Transcriptoma/genética
12.
Cells ; 9(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019500

RESUMEN

All eukaryotes rely on the ubiquitin-proteasome system (UPS) and autophagy to control the abundance of key regulatory proteins and maintain a healthy intracellular environment. In the UPS, damaged or superfluous proteins are ubiquitinated and degraded in the proteasome, mediated by three types of ubiquitin enzymes: E1s (ubiquitin activating enzymes), E2s (ubiquitin conjugating enzymes), and E3s (ubiquitin protein ligases). Conversely, in autophagy, a vesicular autophagosome is formed that transfers damaged proteins and organelles to the vacuole, mediated by a series of ATGs (autophagy related genes). Despite the use of two completely different componential systems, the UPS and autophagy are closely interconnected and mutually regulated. During autophagy, ATG8 proteins, which are autophagosome markers, decorate the autophagosome membrane similarly to ubiquitination of damaged proteins. Ubiquitin is also involved in many selective autophagy processes and is thus a common factor of the UPS and autophagy. Additionally, the components of the UPS, such as the 26S proteasome, can be degraded via autophagy, and conversely, ATGs can be degraded by the UPS, indicating cross regulation between the two pathways. The UPS and autophagy cooperate and jointly regulate homeostasis of cellular components during plant development and stress response.


Asunto(s)
Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Autofagia , Humanos
13.
Front Plant Sci ; 11: 164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184795

RESUMEN

Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.

14.
BMC Genomics ; 21(1): 211, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138648

RESUMEN

BACKGROUND: Plant height, mainly decided by main stem height, is the major agronomic trait and closely correlated to crop yield. A number of studies had been conducted on model plants and crops to understand the molecular and genetic basis of plant height. However, little is known on the molecular mechanisms of peanut main stem height. RESULTS: In this study, a semi-dwarf peanut mutant was identified from 60Co γ-ray induced mutant population and designated as semi-dwarf mutant 2 (sdm2). The height of sdm2 was only 59.3% of its wild line Fenghua 1 (FH1) at the mature stage. The sdm2 has less internode number and short internode length to compare with FH1. Gene expression profiles of stem and leaf from both sdm2 and FH1 were analyzed using high throughput RNA sequencing. The differentially expressed genes (DEGs) were involved in hormone biosynthesis and signaling pathways, cell wall synthetic and metabolic pathways. BR, GA and IAA biosynthesis and signal transduction pathways were significantly enriched. The expression of several genes in BR biosynthesis and signaling were found to be significantly down-regulated in sdm2 as compared to FH1. Many transcription factors encoding genes were identified as DEGs. CONCLUSIONS: A large number of genes were found differentially expressed between sdm2 and FH1. These results provide useful information for uncovering the molecular mechanism regulating peanut stem height. It could facilitate identification of causal genes for breeding peanut varieties with semi-dwarf phenotype.


Asunto(s)
Arachis/crecimiento & desarrollo , Arachis/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , RNA-Seq
15.
Plant Methods ; 15: 93, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417609

RESUMEN

BACKGROUND: Grafting, an ancient agronomic technique, is an artificial mode of asexual reproduction in plants. Recently, grafting research has gradually shifted from modifying agronomic traits to the study of molecular mechanism. Grafting is an excellent tool to study long-range signaling processes in plants. And the grafting between species will help elucidate the molecular mechanisms underlying contrasting differences between different species. Arabidopsis thaliana is a salt-sensitive model glycophyte and Eutrema salsugineum (previously Thellungiella salsuginea, salt cress) is a salt-tolerant model halophyte. Successful grafting of these two model plants will help further study the physiological and molecular mechanisms underlying salt tolerance in plants. The aim of this study was to demonstrate two sterile micro-grafting methods for Arabidopsis and salt cress. RESULTS: We developed the methods for sterile grafting between A. thaliana and E. salsugineum; this is the first report on inter-generic grafting between Arabidopsis and Eutrema. The method involves cut-in grafting under sterile conditions. The grafted plant part was placed in half strength Murashige and Skoog medium with 1% agar and 1% sugar, and then cultured vertically with 22 °C/18 °C short-day/night cycles. The plants were then transferred to half strength Hoagland nutrient solution for hydroponics. The reported method is simple and easy to operate. Self-grafted Arabidopsis-Arabidopsis and Eutrema-Eutrema plants were used as controls, which were obtained with an improved hypocotyl-cutting grafting method. Ion contents in grafted plants were detected by inductively coupled plasma optical emission spectroscopy. The results showed that the ion content in salt cress and Arabidopsis changed to different degrees after grafting. CONCLUSIONS: The inter-species grafting technique described here makes it possible to study hybrid plants between Arabidopsis and Eutrema and will contribute to further understanding of long-distance communications in plants. This technique also provides a reference for improving plant varieties using grafting, such as gardening plants, as well as fruit and vegetable crops.

16.
Plant Cell Rep ; 37(8): 1091-1100, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29868984

RESUMEN

KEY MESSAGE: A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.). Here, we developed a simple and effective VIGS method for silencing genes in young cotton seedlings and roots by soaking naked seeds in Agrobacterium cultures carrying tobacco rattle virus (TRV)-VIGS vectors. When the naked seeds were soaked in Agrobacterium cultures with an OD600 of 1.5 for 90 min, it was optimal for silencing genes effectively in young seedlings as clear photo-bleaching phenotype in the newly emerging leaves of pTRV:GhCLA1 seedlings were observed at 12-14 days post inoculation. Silencing of GhPGF (cotton pigment gland formation) by this method resulted in a 90% decrease in transcript abundances of the gene in roots at the early development stage. We further used the tool to investigate function of GhBI-1 (cotton Bax inhibitor-1) gene in response to salt stress and demonstrated that GhBI-1 might play a protective role under salt stress by suppressing stress-induced cell death in cotton. Our results showed that the newly established VIGS method is a powerful tool for elucidating functions of genes in cotton, especially the genes expressed in young seedlings and roots.


Asunto(s)
Gossypium/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/efectos de los fármacos , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Cloruro de Sodio/farmacología
17.
J Integr Plant Biol ; 60(7): 591-607, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29575603

RESUMEN

Hydrogen peroxide (H2 O2 ) is generated in many metabolic processes. As a signaling molecule, H2 O2 plays important roles in plant growth and development, as well as environmental stress response. In Arabidopsis, there are three catalase genes, CAT1, CAT2, and CAT3. The encoded catalases are predominately peroxisomal proteins and are critical for scavenging H2 O2 . Since CAT1 and CAT3 are linked on chromosome 1, it has been almost impossible to generate cat1/3 and cat1/2/3 mutants by traditional genetic tools. In this study, we constructed cat1/3 double mutants and cat1/2/3 triple mutants by CRISPR/Cas9 to investigate the role of catalases. The cat1/2/3 triple mutants displayed severe redox disturbance and growth defects under physiological conditions compared with wild-type and the cat2/3 double mutants. Transcriptome analysis showed a more profound transcriptional response in the cat1/2/3 triple mutants compared to the cat2/3 mutants. These differentially expressed genes are involved in plant growth regulation as well as abiotic and biotic stress responses. In addition, expression of OXI1 (OXIDATIVE SIGNAL INDUCIBLE 1) and several MAPK cascade genes were changed dramatically in the catalase triple mutant, suggesting that H2 O2 produced in peroxisomes could serve as a peroxisomal retrograde signal.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Catalasa/genética , Mutación/genética , Peroxisomas/metabolismo , Desarrollo de la Planta , Transducción de Señal , Arabidopsis/genética , Arabidopsis/fisiología , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Desarrollo de la Planta/genética , Reproducción , Estrés Fisiológico/genética , Transcriptoma/genética
18.
Plant Cell ; 28(6): 1422-39, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27268429

RESUMEN

The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Ácido Abscísico/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequías , Fosforilación/efectos de los fármacos , Fosforilación/genética , Estomas de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
G3 (Bethesda) ; 5(12): 2793-9, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26483012

RESUMEN

Soybean [Glycine max (L.) Merrill] is an important crop worldwide. In this study, a Chinese local soybean cultivar, Hedou 12, was resequenced by next generation sequencing technology to develop INsertion/DELetion (INDEL) markers for genetic mapping. 49,276 INDEL polymorphisms and 242,059 single nucleotide polymorphisms were detected between Hedou 12 and the Williams 82 reference sequence. Of these, 243 candidate INDEL markers ranging from 5-50 bp in length were chosen for validation, and 165 (68%) of them revealed polymorphisms between Hedou 12 and Williams 82. The validated INDEL markers were also tested in 12 other soybean cultivars. The number of polymorphisms in the pairwise comparisons of 14 soybean cultivars varied from 27 to 165. To test the utility of these INDEL markers, they were used to perform genetic mapping of a crinkly leaf mutant, and the CRINKLY LEAF locus was successfully mapped to a 360 kb region on chromosome 7. This research shows that high-throughput sequencing technologies can facilitate the development of genome-wide molecular markers for genetic mapping in soybean.


Asunto(s)
Mapeo Cromosómico , Marcadores Genéticos , Genoma de Planta , Glycine max/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Cromosomas de las Plantas , Genómica , Fenotipo , Filogenia , Polimorfismo Genético , Reproducibilidad de los Resultados , Glycine max/clasificación
20.
Sci China Life Sci ; 58(11): 1142-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26345162

RESUMEN

Actin cytoskeleton dynamics is critical for variety of cellular events including cell elongation, division and morphogenesis, and is tightly regulated by numerous groups of actin binding proteins. However it is not well understood how these actin binding proteins are modulated in a physiological condition by their interaction proteins. In this study, we describe that Arabidopsis 14-3-3 λ protein interacted with actin depolymerizing factor 1 (ADF1) in plant to regulate F-actin stability and dynamics. Loss of 14-3-3 λ in Arabidopsis resulted in longer etiolated hypocotyls in dark and changed actin cytoskeleton architecture in hypocotyl cells. Overexpression of ADF1 repressed 14-3-3 λ mutant hypocotyl elongation and actin dynamic phenotype. In addition, the phosphorylation level of ADF1 was increased and the subcellular localization of ADF1 was altered in 14-3-3 λ mutant. Consistent with these observations, the actin filaments were more stable in 14-3-3 λ mutant. Our results indicate that 14-3-3 λ protein mediates F-actin dynamics possibly through inhibiting ADF1 phosphorylation in vivo.


Asunto(s)
Proteínas 14-3-3/metabolismo , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Factores Despolimerizantes de la Actina/genética , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Hipocótilo/genética , Hipocótilo/metabolismo , Cinética , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Mutación , Fosforilación , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...