Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Lung Cancer Res ; 9(3): 646-658, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32676327

RESUMEN

BACKGROUND: Germline variations may contribute to lung cancer susceptibility besides environmental factors. The influence of germline mutations on lung cancer susceptibility and their correlation with somatic mutations has not been systematically investigated. METHODS: In this study, germline mutations from 1,026 non-small cell lung cancer (NSCLC) patients were analyzed with a 58-gene next-generation sequencing (NGS) panel containing known hereditary cancer-related genes, and were categorized based on American College of Medical Genetics and Genomics (ACMG) guidelines in pathogenicity, and the corresponding somatic mutations were analyzed using a 605-gene NGS panel containing known cancer-related genes. RESULTS: Plausible genetic susceptibility was found in 4.7% of lung cancer patients, in which 14 patients with pathogenic mutations (P group) and 34 patients with likely-pathogenic mutations (LP group) were identified. The ratio of the first degree relatives with lung cancer history of the P groups was significantly higher than the Non-P group (P=0.009). The ratio of lung cancer patients with history of other cancers was higher in P (P=0.0007) or LP (P=0.017) group than the Non-P group. Pathogenic mutations fell most commonly in BRCA2, followed by CHEK2 and ATM. Likely-pathogenic mutations fell most commonly in NTRK1 and EXT2, followed by BRIP1 and PALB2. These genes are involved in DNA repair, cell cycle regulation and tumor suppression. By comparing the germline mutation frequency from this study with that from the whole population or East Asian population (gnomAD database), we found that the overall odds ratio (OR) for P or LP group was 17.93 and 15.86, respectively, when compared with the whole population, and was 2.88 and 3.80, respectively, when compared with the East Asian population, suggesting the germline mutations of the P and LP groups were risk factors for lung cancer. Somatic mutation analysis revealed no significant difference in tumor mutation burden (TMB) among the groups, although a trend of lower TMB in the pathogenic group was found. The SNV/INDEL mutation frequency of TP53 in the P group was significantly lower than the other two groups, and the copy number variation (CNV) mutation frequency of PIK3CA and MET was significantly higher than the Non-P group. Pathway enrichment analysis found no significant difference in aberrant pathways among the three groups. CONCLUSIONS: A proportion of 4.7% of patients carrying germline variants may be potentially linked to increased susceptibility to lung cancer. Patients with pathogenic germline mutations exhibited stronger family history and higher lung cancer risk.

2.
Front Oncol ; 10: 726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457845

RESUMEN

Anaplastic lymphoma kinase (ALK) fusion events account for ~3-7% genetic alterations in patients with non-small cell lung cancer (NSCLC). In this study, we identified the ALK fusion patterns and a novel ALK fusion partner in 44 ALK positive NSCLC patients using a customized HapOncoCDx panel, and identified ALK fusion partners. The most common partner is EML4, forming the variant 1 (v1, E13:A20, 18/44), variant 2 (v2, E20:A20, 5/44), and variant 3 (v3, E6:A20, 13/44). Moreover, we detected a new ALK fusion partner HMBOX1. At the mutation level, TP53 is the most frequently mutated gene (24%), followed by ALK (12%) and STED2 (12%). The median tumor mutation burden (TMB) of these samples is 2.29 mutations/Mb, ranging from 0.76 mut/Mb to 16.79 muts/Mb. We further elaborately portrayed the TP53 mutation sites on the peptide sequence of the encoded protein by lollipop. The mutational signature and copy number alterations (CNAs) of the samples were also analyzed. The CNA events were found in 13 (13/44) patients, and the most commonly amplified genes were MDM2 (n = 4/13) and TERT (n = 4/13). Together, these results may guide personalized clinical management of patients with ALK fusion in the era of precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA