Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(30): 4048-4051, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38502133

RESUMEN

This study introduces novel Liquid Organic Hydrogen Carriers (LOHCs) derived from quinoxaline. It shows that strategically incorporating N atoms and methyl groups markedly improves the hydrogen release kinetics. This structural modulation optimizes the adsorption properties and enables low-temp C-H bond activation, providing valuable insights for developing efficient LOHCs.

2.
RSC Adv ; 11(26): 15729-15737, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481171

RESUMEN

2,3-Dimethylindole (2,3-DMID), a candidate with a hydrogen storage capacity of 5.23 wt%, was studied as a new liquid organic hydrogen carrier (LOHC) in detail in this report. Hydrogenation of 2,3-DMID was conducted over 5 wt% Ru/Al2O3 by investigating the influences of temperature and hydrogen pressure. 100% of fully hydrogenated product, 8H-2,3-DMID can be achieved at 190 °C and 7 MPa in 4 h. Dehydrogenation of 8H-2,3-DMID was performed over 5 wt% Pd/Al2O3 at 180-210 °C and 101 kPa. It is found that dehydrogenation of 8H-2,3-DMID followed first order kinetics with an apparent activation energy of 39.6 kJ mol-1. The structures of intermediates produced in the 8H-2,3-DMID dehydrogenation process were analyzed by DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...