Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hypertens Res ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261700

RESUMEN

Superselective adrenal artery embolization (SAAE) offers a novel approach for treating primary aldosteronism (PA). In this study, we aimed to assess the efficacy and safety of SAAE for the treatment of PA based on the lateralization results obtained from adrenal vein sampling (AVS).In this prospective study, we enrolled 40 patients with PA who underwent SAAE. The patients were categorized into two groups, unilateral PA and bilateral PA, based on AVS results. Clinical parameters and biochemical markers were assessed at 3 and 12 months postoperatively. The primary outcomes were changes in blood pressure and defined daily dose (DDD) of antihypertensive medications compared to baseline. Thirty-eight patients achieved technical success, with favorable clinical and biochemical efficacy rates. At three months postoperatively, the clinical efficacy rates were 79.2% and 78.6% for the UPA and BPA groups, respectively. At 12 months, the rates were 83.3% and 71.4%, respectively. Both groups exhibited a significant decrease in average blood pressure at 3 and 12 months compared with baseline (P < 0.001), and there was also a notable reduction in DDD (P < 0.05). At three months, the biochemical efficacy rates were 61.9% and 58.3% in the UPA and BPA groups, respectively. Due to loss to follow-up, biochemical indicators were not assessed at 12 months postoperatively. No severe adverse reactions occurred during or after SAAE. Patients with both UPA and BPA can benefit from SAAE. The superiority of bilateral adrenal artery embolization in the treatment of BPA over unilateral adrenal artery embolization requires further investigation.

2.
Front Microbiol ; 13: 981807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187974

RESUMEN

Sour bamboo shoot is a traditional Chinese fermented vegetable food. The traditional pickling method of sour bamboo shoots has the disadvantages of being time-consuming, inhomogeneous, and difficult to control. Pulsed vacuum pressure pickling (PVPP) technology uses pulsed vacuum pressure to enhance the pickling efficiency significantly. To demonstrate the effects of salt content and PVPP technical parameters on the fermentation of bamboo shoots, the sample salinity, pH value, color, crunchiness and chewiness, nitrite content, and lactic acid bacteria content during the pickling process were investigated. The salt content inside the bamboo shoots gradually increased to the equilibrium point during the pickling process. The pickling efficiency of bamboo shoots under PVPP technology increased by 34.1% compared to the traditional control groups. Meanwhile, the uniform salt distribution under PVPP technology also obtained better performance in comparison with the traditional groups. The pH value declined slowly from 5.96 to 3.70 with the extension of pickling time and sour flavor accumulated progressively. No significant differences were found in the color values (L *, a *, and b *) and the crunchiness of the bamboo shoot under different salt solution concentrations, vacuum pressure, and pulsation frequency ratio conditions. Colony-forming unit of lactic acid bacteria (CFU of LAB) decreased, to begin with, and then increased until the 6th day, followed by a declining trend in volatility. The nitrate content of bamboo shoots samples under PVPP treatments did not exceed the safety standard (<20 mg/kg) during the whole fermentation process, which proves the safety of PVPP technology. In conclusion, PVPP technology can safely replace the traditional method with better quality performance. The optimal PVPP processing conditions (vacuum pressure 60 kPa, 10 min vacuum pressure time vs. 4 min atmospheric pressure time, salt solution concentration 6%) have been recommended for pickling bamboo shoots with high product quality.

3.
Huan Jing Ke Xue ; 43(4): 2204-2208, 2022 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-35393844

RESUMEN

Soil pH is recognized as an important environmental factor in determining the niche differentiation for ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Species of comammox, a single microorganism capable of the complete oxidation of ammonia to nitrate, have recently been discovered. Metagenomic analysis and quantitative PCR showed that Comammox Nitrospira were found in a wide range of environments, including soil. Comammox bacteria are differentiated into one of two clades (A and B) based on the phylogeny of genes encoding the α-subunit of ammonia monooxygenase genes (amoA). However, all discovered Comammox Nitrospira strains have been isolated and cultured in aquatic ecosystems, including N. inopinata, N. nitrosa, and N. nitrificans, all belonging to clade A. Currently, Comammox Nitrospira has not been obtained from soil environments, which limits our understanding of soil Comammox Nitrospira. Here we hypothesized that, as AOA and AOB, the ecological site of Comammox Nitrospira may also be affected by pH. Therefore, soil samples with differing pH were collected, and the abundances and community structures were studied to elucidate the mechanism of pH effect on the distributions and community compositions of Comammox Nitrospira in soil. Quantitative PCR of comammox clade A and clade B amoA genes in DNA extracts were performed using QuantStudio TM6 Flex Real-Time PCR Systems. The community compositions for Comammox Nitrospira were studied by the cloning libraries of amoA genes method. The results showed that the abundance of Comammox clade A amoA gene in acidic paddy soil was two orders of magnitude higher than that in neutral paddy soil (P<0.05), and the abundance of Comammox clade B in acidic paddy soil was significantly higher than that in neutral paddy soil (P<0.05); the abundance of Comammox clade A amoA gene in acidic paddy soil was 60 times higher than that of clade B, whereas the abundance ratio of Comammox clade A and clade B amoA genes in neutral paddy soil was about two times higher. These results indicated that soil pH significantly affected the abundance of Comammox Nitrospira. The results of cloning and sequencing showed that the Comammox in neutral paddy soil was mainly N. inopinata, which belonged to clade A; no strain belonging to clade B was annotated. Comammox clade A in acidic paddy soil was mainly Composed of N. inopinata and N. nitrosa, and clade B was mainly uncultured bacterium (FN395328). The results indicated that soil pH was an important factor in shaping Comammox Nitrospira community structure. Comammox Nitrospira were detected in all soil samples, and Comammox clade A had a preference for acidic environments. It seemed that species from N. nitrosa possessed the ecological niche of low pH environments, whereas species from N. inopinata preferred to live in neutral environments. In conclusion, pH had a significant effect on the abundance and community structure of Comammox Nitrospira, which was one of the important factors affecting the niche differentiation of Comammox Nitrospira.


Asunto(s)
Betaproteobacteria , Suelo , Amoníaco , Archaea/genética , Bacterias , Ecosistema , Concentración de Iones de Hidrógeno , Nitrificación , Oxidación-Reducción , Filogenia , Suelo/química , Microbiología del Suelo
4.
Huan Jing Ke Xue ; 42(10): 4951-4958, 2021 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-34581139

RESUMEN

Nitrogen metabolism pathways mediated by microorganisms play an important role in maintaining the structure and functional stability of soil ecosystems. Clarifying the relationships between microbial communities and nitrogen metabolism pathways can expand our understanding of nitrogen metabolism pathways at a microscopic level. However, the horizontal gene transfer of microorganisms means that taxonomy-based methods cannot be easily applied. A growing number of studies have shown that functional traits affect community construction and ecosystem functions. Using methods based on functional traits to study soil microbial communities can, therefore, better characterize nitrogen metabolism pathways. Here, five typical forest soils in China, namely black soil(Harbin, Heilongjiang), dark-brown earth(Changbaishan, Jilin), yellow-brown earth(Wuhan, Hubei), red earth(Fuzhou, Fujian), and humid-thermo ferralitic soil(Ledong, Hainan), were selected to study the traits of nitrogen metabolism pathways using metagenomic technology combined with the trait-based methods. The studied nitrogen metabolism pathways were ammonia assimilation, nitrate dissimilatory reduction, nitrate assimilatory reduction, denitrification, nitrification, nitrogen fixation, and anaerobic ammonia oxidation. The results showed that bacteria dominated the metagenomic library, accounting for 98.02% of all the sequences. Across all domains, the most common pathway was ammonia assimilation. For example, an average of 2830 ammonia assimilation pathway genes were detected for every million annotated bacterial sequences. In comparison, nitrogen fixation and anaerobic ammonia oxidation were the least detected pathways, accounting for 28.3 and 10.7 per million sequences, respectively. Different microorganisms can participate in a same nitrogen metabolism pathway, and the community structure of different soils was variable. The five typical forest soils in China show the same microbial nitrogen metabolism pathway traits; however, the community structure of the microorganisms mediating these processes was found to vary.


Asunto(s)
Microbiota , Suelo , Archaea , China , Bosques , Microbiota/genética , Nitrificación , Nitrógeno , Oxidación-Reducción , Microbiología del Suelo
5.
Huan Jing Ke Xue ; 40(6): 2930-2938, 2019 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-31854688

RESUMEN

Increasing evidence suggests that ammonia oxidation in acidic soils is primarily catalyzed by ammonia-oxidizing archaea (AOA), while ammonia-oxidizing bacteria (AOB) drive ammonia oxidation in neutral and alkaline soils in which AOA overwhelmingly outnumber AOB. Therefore, neutral purple soil with a pH of 7.2 was selected to study the composition of the active ammoxidation microbial community with a stable isotope nucleic acid probe technique combined with cloning sequencing. Results showed that the nitrification rate was 9.68 mg·(kg·d)-1, and AOA and AOB were abundant in neutral purple soils. By using DNA-based stable isotope probing (SIP), we gathered strong evidence of archaeal ammonia oxidation by AOA and AOB. Phylogenetic analysis indicated that the Nitrosospira Cluster 3a.1 AOB was dominant in terms of quantity at 0 days, and the Nitrosospira Cluster 3a.2 only accounted for a small part. After 56 days of cultivation, the Nitrosospira Cluster 3a.2 replaced the Nitrosospira Cluster 3a.1 as the active AOB that dominated ammonia oxidation. The AOA that predominated quantitatively at day 0 was Nitrososphaera Subcluster 9, but after cultivation this became Nitrososphaera Subcluster 3.2/3.3. Thus, the community structure of AOA and AOB changed. Active autotrophic nitrification was found in this neutral purple soil. Sequencing analysis of the 13C-labeled DNA provided robust evidence that both archaea and bacteria played important roles in the nitrification and not all ammonia oxidizers in native soil were active in the nitrification. Phylogenetic analysis clearly showed that the dominant active archaea and bacteria during the incubation were affiliated with Nitrososphaera Subcluster 3.2/3.3 within the soil group 1.1b lineage and Nitrosospira Cluster 3a.2, respectively, which were different from the dominant ammonia oxidizers at the beginning of the incubation. These results suggest that the community structure of ammonia oxidizers can shift quickly upon changes in the substrate availability in soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA