Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 69: 102990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091880

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disease that is associated with multiple environmental risk factors, including heavy metals. Lead (Pb) is a heavy metal contaminant, which is closely related to the incidence of AD. However, the research on the role of microglia in Pb-induced AD-like pathology is limited. To determine the mechanism by which Pb exposure aggravates AD progression and the role of microglial activation, we exposed APP/PS1 mice and Aß1-42-treated BV-2 cells to Pb. Our results suggested that chronic Pb exposure exacerbated learning and memory impairments in APP/PS1 mice. Pb exposure increased the activation of microglia in the hippocampus of APP/PS1 mice, which was associated with increased deposition of Aß1-42, and induced hippocampal neuron damage. Pb exposure upregulated copper transporter 1 (CTR1) and downregulated copper P-type ATPase transporter (ATP7A) in the hippocampus of APP/PS1 mice and Aß1-42-treated BV-2 cells. Moreover, Pb enhanced mitochondrial translocation of the mitochondrial copper transporter COX17, leading to an increase in mitochondrial copper concentration and mitochondrial damage. This could be reversed by copper-chelating agents or by inhibiting the mitochondrial translocation of COX17. The increased mitochondrial copper concentration caused by increased mitochondrial translocation of COX17 after Pb exposure may be related to the enhanced mitochondrial import pathway of AIF/CHCHD4. These results indicate that Pb induces the activation of microglia by increasing the concentration of copper in the mitochondria of microglia, and microglia release inflammatory factors to promote neuroinflammation, thus aggravating the pathology of AD. The present study provides new ideas for the prevention of Pb-induced AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Cobre/toxicidad , Ratones Transgénicos , Plomo/toxicidad , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
2.
Ecotoxicol Environ Saf ; 256: 114861, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027943

RESUMEN

The brain barrier is an important structure for metal ion homeostasis. According to studies, lead (Pb) exposure disrupts the transportation of copper (Cu) through the brain barrier, which may cause impairment of the nervous system; however, the specific mechanism is unknown. The previous studies suggested the X-linked inhibitor of apoptosis (XIAP) is a sensor for cellular Cu level which mediate the degradation of the MURR1 domain-containing 1 (COMMD1) protein. XIAP/COMMD1 axis was thought to be an important regulator in Cu metabolism maintenance. In this study, the role of XIAP-regulated COMMD1 protein degradation in Pb-induced Cu disorders in brain barrier cells was investigated. Pb exposure significantly increased Cu levels in both cell types, according to atomic absorption technology testing. Western blotting and reverse transcription PCR (RT-PCR) showed that COMMD1 protein levels were significantly increased, whereas XIAP, ATP7A, and ATP7B protein levels were significantly decreased. However, there were no significant effects at the messenger RNA (mRNA) level (XIAP, ATP7A, and ATP7B). Pb-induced Cu accumulation and ATP7B expression were reduced when COMMD1 was knocked down by transient small interfering RNA (siRNA) transfection. In addition, transient plasmid transfection of XIAP before Pb exposure reduced Pb-induced Cu accumulation, increased COMMD1 protein levels, and decreased ATP7B levels. In conclusion, Pb exposure can reduce XIAP protein expression, increase COMMD1 protein levels, and specifically decrease ATP7B protein levels, resulting in Cu accumulation in brain barrier cells.


Asunto(s)
Cobre , Plomo , Cobre/metabolismo , Plomo/metabolismo , Proteolisis , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/metabolismo , ARN Interferente Pequeño/metabolismo , Encéfalo/metabolismo
3.
Ecotoxicol Environ Saf ; 257: 114945, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105093

RESUMEN

BACKGROUND: Lead contamination is a major public health concern. Previous studies have demonstrated that lead exposure could affect the hippocampus, which is a complex and heterogeneous structure composed of 12 subregions. Here, we explored volumetric and functional changes in hippocampal subfields and neuropsychological alterations after lead exposure. METHODS: We performed a cross-sectional study at a smelting company between September 2020 and December 2021. Blood lead level was recorded, and neuropsychological functions were assessed by Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). The hippocampus was segmented into 12 subfields in each hemisphere in magnetic resonance images (MRIs). Then, the effect of altered hippocampal subfield volumes on brain functions were studied by seed-based functional connectivity (FC) analysis. Finally, the relationships between the lead level with hippocampal subfield volumes and neuropsychological functions were investigated. Baseline characteristics, hippocampal subfield volumes, and FC analysis were compared between lead-exposed (≥ 300 µg/L) and the control group (≤ 100 µg/L). RESULTS: In 76 participants, lead level positively correlated with SDS(r = 0.422) and negatively correlated with MoCA(r = -0.414), MMSE(r = -0.251), Concentration(r = -0.331), Recall(r = -0.319), Orientation(r = -0.298) and Executive Function/Visuospatial abilities(r = -0.231). Lead group (26 participants) had lower MoCA and MMSE and higher SDS than control group (23 participants). A significantly decreased volume in the left CA4 and GC-ML-DG subfields was found in the lead group compared with the control group. The left GC-ML-DG of the lead group showed a decreased FC with the bilateral postcentral gyrus. The left CA4(r = -0.409) and left GC-ML-DG (r = -0.383) volumes negatively correlated with lead level. The FC between left GC-ML-DG and left postcentral gyrus positively correlated with MoCA(r = 0.318), MMSE(r = 0.379) and Recall(r = 0.311). The FC between left GC-ML-DG and right postcentral gyrus positively correlated with MoCA(r = 0.326), Executive Function/Visuospatial abilities(r = 0.307) and Concentration(r = 0.297). CONCLUSION: High blood lead level was associated with neuropsychological alterations, hippocampal structural and functional changes. The left GC-ML-DG and CA4 atrophy might serve as predictive imaging markers for neurological damage associated with high lead exposure.


Asunto(s)
Plomo , Enfermedades Neurodegenerativas , Humanos , Plomo/toxicidad , Estudios Transversales , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/patología , Atrofia/patología
4.
Mol Brain ; 14(1): 129, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419133

RESUMEN

Hypobaric hypoxia (HH) is a typical characteristic of high altitude environment and causes a spectrum of pathophysiological effects, including headaches, gliovascular dysfunction and cognitive retardation. Here, we sought to understand the mechanisms underlying cognitive deficits under HH exposure. Our results showed that hypobaric hypoxia exposure impaired cognitive function and suppressed dendritic spine density accompanied with increased neck length in both basal and apical hippocampal CA1 region neurons in mice. The expression of PSD95, a vital synaptic scaffolding molecule, is down-regulated by hypobaric hypoxia exposure and post-transcriptionally regulated by cold-inducible RNA-binding protein (Cirbp) through 3'-UTR region binding. PSD95 expressing alleviates hypoxia-induced dendritic spine morphology changes of hippocampal neurons and memory deterioration. Moreover, overexpressed Cirbp in hippocampus rescues HH-induced abnormal expression of PSD95 and attenuates hypoxia-induced dendritic spine injury and cognitive retardation. Thus, our findings reveal a novel mechanism that Cirbp-PSD-95 axis appears to play an essential role in HH-induced cognitive dysfunction in mice.


Asunto(s)
Mal de Altura/fisiopatología , Región CA1 Hipocampal/patología , Trastornos del Conocimiento/prevención & control , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/fisiología , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas 3' , Animales , Reacción de Prevención , Secuencia de Bases , Células Cultivadas , Trastornos del Conocimiento/etiología , Homólogo 4 de la Proteína Discs Large/biosíntesis , Homólogo 4 de la Proteína Discs Large/genética , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos C57BL , Prueba del Laberinto Acuático de Morris , Neuronas/fisiología , Neuronas/ultraestructura , Prueba de Campo Abierto , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Distribución Aleatoria , Proteínas Recombinantes de Fusión/metabolismo
5.
Theranostics ; 11(11): 5511-5524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859760

RESUMEN

Background: Abnormal tau accumulation in the brain has a positively correlation with neurodegeneration and memory deterioration, but the mechanism underlying tau-associated synaptic and cognitive impairments remains unclear. Our previous work has found that human full length tau (hTau) accumulation activated signal transducer and activator of transcription-1 (STAT1) to suppress N-methyl-D-aspartate receptors (NMDARs) expression, followed by memory deficits. STAT3 also belongs to STAT protein family and is reported to involve in regulation of synaptic plasticity and cognition. Here, we investigated the role of STAT3 in the cognitive deficits induced by hTau accumulation. Methods:In vitro studies HEK293 cells were used. EMSA, Luciferase reporter assay, and Immunoprecipitation were applied to detect STAT3 activity. In vivo studies, AAV virus were injected into the hippocampal CA3 region of C57 mice. Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence were applied to examine the level of synaptic proteins. Electrophysiological analysis, behavioral testing and Golgi impregnation were used to determine synaptic plasticity and memory ability recovery after overexpressing STAT3 or non-acetylated STAT1. Results: Our results showed that hTau accumulation acetylated STAT1 to retain STAT3 in the cytoplasm by increasing the binding of STAT1 with STAT3, and thus inactivated STAT3. Overexpressing STAT3 or non-acetylated STAT1 ameliorated hTau-induced synaptic loss and memory deficits by increasing the expression of NMDARs. Conclusions: Taken together, our study indicates that hTau accumulation impaired synaptic plasticity through STAT3 inactivation induced suppression of NMDARs expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Cognición/fisiología , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Memoria/fisiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Fosforilación/fisiología , Factor de Transcripción STAT1/metabolismo , Sinapsis/metabolismo , Proteínas tau/metabolismo
6.
Front Cell Dev Biol ; 9: 648261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718391

RESUMEN

Lead (Pb) can cause a significant neurotoxicity in both adults and children, leading to the impairment to brain function. Pb exposure plays a key role in the impairment of learning and memory through synaptic neurotoxicity, resulting in the cognitive function. Researches have demonstrated that Pb exposure plays an important role in the etiology and pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. However, the underlying mechanisms remain unclear. In the current study, a gestational Pb exposure (GLE) rat model was established to investigate the underlying mechanisms of Pb-induced cognitive impairment. We demonstrated that low-level gestational Pb exposure impaired spatial learning and memory as well as hippocampal synaptic plasticity at postnatal day 30 (PND 30) when the blood concentration of Pb had already recovered to normal levels. Pb exposure induced a decrease in hippocampal glucose metabolism by reducing glucose transporter 4 (GLUT4) levels in the cell membrane through the phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) pathway. In vivo and in vitro GLUT4 over-expression increased the membrane translocation of GLUT4 and glucose uptake, and reversed the Pb-induced impairment to synaptic plasticity and cognition. These findings indicate that Pb exposure impairs synaptic plasticity by reducing the level of GLUT4 in the cell membrane as well as glucose uptake via the PI3K-Akt signaling pathway, demonstrating a novel mechanism for Pb exposure-induced neurotoxicity.

7.
Biophys Rep ; 6(5): 211-221, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37288309

RESUMEN

Understanding the precise intracellular localization of lead (Pb) is a key in deciphering processes in Pb-induced toxicology. However, it is a great challenge to trace Pb in vitro, especially in cultured cells. We aimed to find an innovative and efficient approach to investigate distribution of Pb in cells and to validate it through determining the subcellular Pb content. We identified its ultra-structural distribution with autometallography under electron microscopy in a choroidal epithelial Z310 cell line. Electron microscopy in combination with energy-dispersive X-ray spectroscope (EDS) was employed to provide further evidence of Pb location. In addition, Pb content was determined in the cytosol, membrane/organelle, nucleus and cytoskeleton fractions with atomic absorption spectroscopy. Pb was found predominantly inside the nuclear membranes and some was distributed in the cytoplasm under low-concentration exposure. Nuclear existence of Pb was verified by EDS under electron microscopy. Once standardized for protein content, Pb percentage in the nucleus fraction reached the highest level (76%). Our results indicate that Pb is accumulated mainly in the nucleus of choroid plexus. This method is sensitive and precise in providing optimal means to study the ultra-structural localization of Pb for in vitro models. In addition, it offers the possibility of localization of other metals in cultured cells. Some procedures may also be adopted to detect target proteins via immunoreactions.

8.
Sci Rep ; 8(1): 3533, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476096

RESUMEN

Lead (Pb) is known to impair children's cognitive function. It has been previously shown that developmental Pb exposure alters dendritic spine formation in hippocampal pyramidal neurons. However, the underlying mechanism has not yet been defined. In this study, a low-level gestational Pb exposure (GLE) rat model was employed to investigate the impact of Pb on the spine density of the hippocampal pyramidal neurons and its regulatory mechanism. Pb exposure resulted in impaired performance of the rats in the Morris water maze tasks, and in decreased EPSC amplitudes in hippocampal CA3-CA1 regions. With a 3D reconstruction by the Imaris software, the results from Golgi staining showed that the spine density in the CA1 region was reduced in the Pb-exposed rats in a dose-dependent manner. Decreased spine density was also observed in cultured hippocampal neurons following the Pb treatment. Furthermore, the expression level of NLGN1, a postsynaptic protein that mediates synaptogenesis, was significantly decreased following the Pb exposure both in vivo and in vitro. Up-regulation of NLGN1 in cultured primary neurons partially attenuated the impact of Pb on the spine density. Taken together, our resultssuggest that Pb exposure alters spine plasticity in the developing hippocampus by down-regulating NLGN1 protein levels.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Plomo/toxicidad , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Feto , Regulación de la Expresión Génica , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Neurogénesis/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/diagnóstico por imagen , Efectos Tardíos de la Exposición Prenatal/genética , Cultivo Primario de Células , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura
9.
Neurotoxicology ; 57: 145-152, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27663850

RESUMEN

Low-to-moderate level developmental and adult lead exposure produces retinal dysfunction and/or degeneration in humans and experimental animals. Although high level in vivo or in vitro lead disrupts blood-brain-barrier tight junctions and increases its permeability, the blood-retinal-barrier (BRB) has not been examined. There were four overall goals. First, generate environmentally relevant dose-response models of short-term lead exposure in adult rats. Second, assess retinal histology and functional integrity of the BRB. Third, investigate the transmembrane proteins occludin and claudin-5 as targets mediating the increased BRB permeability. Fourth, examine the contribution of the PI3K-Akt signaling pathway as a mechanism underlying increased BRB permeability. Young adult rats were given water, 0.01% or 0.02% lead drinking solutions for six weeks. In control, 0.01% and 0.02% groups the six week mean blood [Pb] were 1, 12.5 and 19µg/dl, respectively. We employed histology, stereology, quantitative image analysis, immunoblots and densitometry, and pharmacology techniques. Major findings were that adult lead exposure produced dose-dependent 1) decreases in outer and inner nuclear layer thickness, 2) increases in BRB permeability, 3) decreases in occludin and claudin-5 expression, 4) increases in pAkt (Ser473), but not pAkt (Thr308), expression, and 5) wortmannin partially or completely blocked the increased BRB permeability and changes in protein expression. These results indicate that lead-induced increases in PI3K-Akt signaling partially underlie the increased BRB permeability and advance our knowledge about lead-induced retinotoxicity. Furthermore, they suggest that environmental and occupational lead exposures are risk factors for increased BRB permeability in diseases such as age-related macular degeneration, diabetes and stroke.


Asunto(s)
Barrera Hematorretinal/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Plomo/toxicidad , Retina/efectos de los fármacos , Análisis de Varianza , Androstadienos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Claudina-5/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Inmunosupresores/farmacología , Plomo/sangre , Masculino , Ocludina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Factores de Tiempo , Wortmanina
10.
Toxicol Appl Pharmacol ; 297: 1-11, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26926986

RESUMEN

As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation.


Asunto(s)
Plexo Coroideo/metabolismo , Conexina 43/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Plomo/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Plexo Coroideo/efectos de los fármacos , Conexina 43/genética , Regulación hacia Abajo , Doxiciclina , Femenino , Células HEK293 , Humanos , Plomo/sangre , Plomo/líquido cefalorraquídeo , Plomo/toxicidad , Masculino , Fosforilación , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...