Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 130245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367779

RESUMEN

The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.


Asunto(s)
Proteínas de Drosophila , Integrinas , Animales , Integrinas/metabolismo , Drosophila/genética , Epitelio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo
2.
Environ Entomol ; 40(6): 1566-71, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22217774

RESUMEN

Although a considerable amount of information is available on tradeoffs in wing-polymorphic insects, only limited data are available on the relationship between flight and biochemical variation within species. In the current study, we compared the biochemical basis in the dorsolongitudinal flight muscle of the wing-dimorphic sand cricket, Gryllus firmus Scudder, with respect to tradeoffs in energy resources related to morph-specific flight, including glycogen, trehalose, and triglycerides. Our results show that levels of glycogen and trehalose in long-winged adults (LW[f]) were significantly higher before dispersal, on days 5 and 7. Considering that this is the period during which long-winged adults are flight-capable, these results suggest that both glycogen and trehalose are important to flight. However, levels of triglycerides in short-winged crickets (SW) were higher than in long-winged crickets, suggesting that triglycerides are not directly related to initial flight. In SW adults, triglyceride content on days 5 and 7 was significantly higher just before lights off than at the same time on day 1 or at any other time after lights on all other days. This suggests that triglycerides are probably related to reproductive behaviors, such as mating and oviposition, in the SW morph. In addition, flight muscle water content was significantly lower in the LW(f) morph than in the SW morph.


Asunto(s)
Vuelo Animal , Gryllidae/fisiología , Animales , Metabolismo Energético , Glucógeno/metabolismo , Gryllidae/anatomía & histología , Gryllidae/genética , Gryllidae/metabolismo , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Fenotipo , Reproducción , Trehalosa/metabolismo , Triglicéridos/metabolismo , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...