Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764200

RESUMEN

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Glucólisis , Neoplasias Hepáticas , Pantoprazol , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Ratones , Pantoprazol/farmacología , Masculino , Proliferación Celular/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Carcinogénesis/efectos de los fármacos , Dietilnitrosamina/toxicidad , Citocinas/metabolismo , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos
2.
Transplant Proc ; 54(7): 1984-1991, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931471

RESUMEN

BACKGROUND: A half-million people in the United States suffer from cardiac arrest (CA) requiring cardiopulmonary resuscitation (CPR). An inflammatory mechanism is associated with neuronal injury in the presence of cerebral ischemia. T lymphocytes are identified as crucial regulators of inflammation. Therefore, we investigated the relationship between CA/CPR-induced ischemia injury and T lymphocytes. METHODS: C57BL/6 mice were subjected to CA through injection of KCl (30 µL of 0.5 mol/L) and cessation of mechanical ventilation followed by CPR. The survival rate and neurologic deficit scores were assessed. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was carried out to detect neuronal death. Histologic changes were observed by hematoxylin-eosin staining. The levels of Trgv4, Trgv5 and Trgv7 were quantified by RT-qPCR. Inflammatory responses were identified by measurement of IL-1ß, IL-6 and IL-17. RESULTS: Downregulated γδ T cells improved survival and neurologic outcomes and inhibits neuronal apoptosis. γδ T inhibition protected brains from CA/CPR-mediated tissue damage. UC7-13D5 treatment inhibited the levels of γδ T markers. Knockdown of γδ T cells ameliorated neuroinflammation. CONCLUSIONS: Inhibition of γδ T cells ameliorates ischemic injury in mice with CA/CPR by attenuating inflammation and neuronal apoptosis.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Ratones , Paro Cardíaco/complicaciones , Ratones Endogámicos C57BL , Encéfalo/patología , Inflamación/complicaciones , Isquemia/complicaciones , Modelos Animales de Enfermedad
3.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 33(1): 81-4, 2013 Jan.
Artículo en Chino | MEDLINE | ID: mdl-23596793

RESUMEN

OBJECTIVE: To investigate the effects of Weile Powder (WLP) on bicarbonate transporters in rats with gastric ulcers, and to probe its functional mechanisms. METHODS: The 48 SD rats were randomly divided into the normal control group, the model group, the low dose WLP group (at the daily dose of 0.075 g/mL), the middle dose WLP group (at the daily dose of 0.150 g/mL), the high dose WLP group (at the daily dose of 0.030 g/mL), and the ranitidine group (at the daily dose of 0.030 g/mL), 8 in each group. The gastric ulcer rat model was prepared by the glacial acetic acid cauterization method. Rats in each medication group were administered from the 2nd day of modeling. Rats were sacrificed after 14-day successive medication. The protein was extracted from the ulcer tissue. The protein expressions of solute carrier26A3 (SLC26A3)and solute carrier26A6 (SLC26A6) were detected using Western blot. The gastric ulcer and its peripheral tissue were sectioned. The changes of cystic fibrosis transmembrane conductance regulator (CFTR) were measured by immunofluorescence. RESULTS: Compared with the model control group, the expression levels of SLC26A3 increased in the high dose WLP group and the ranitidine group with statistical difference (P < 0.05). The expression levels of SLC26A6 increased in the high and middle dose WLP groups and the ranitidine group with statistical difference (P < 0.05). The expression level of CFTR also obviously increased in the high and middle dose WLP groups (P < 0.01). CONCLUSION: WLP could elevate the expression levels of SLC26A6, SLC26A3, and CFTR, increase the secretion of bicarbonate, thus protecting the gastric mucosa.


Asunto(s)
Antiportadores/metabolismo , Medicamentos Herbarios Chinos/farmacología , Mucosa Gástrica/metabolismo , Úlcera Gástrica/metabolismo , Animales , Bicarbonatos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Mucosa Gástrica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Transportadores de Sulfato
4.
Carcinogenesis ; 33(12): 2432-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22962303

RESUMEN

Tumor cells often exist in a hypoxic microenvironment, which produces acidic metabolites. To survive in this harsh environment, tumor cells must exhibit a dynamic cytosolic pH regulatory system. Vacuolar H(+)-adenosine triphosphatase (V-ATPase) is considered to play an important role in the regulation of the acidic microenvironment of some tumors. In this study, we made an investigation on the expression and functional role of V-ATPase in native human hepatocellular carcinoma (HCC). The results showed that the messenger RNA and protein expression levels of V-ATPase subunit ATP6L in native human HCC tissues were markedly increased, compared with normal liver tissues. Immunohistochemical analysis further confirmed the enhanced expression of V-ATPase ATP6L in human HCC cells and revealed that V-ATPase ATP6L was distributed in the cytoplasm and plasma membrane of HCC cells. The results from immunofluorescence and biotinylation of cell surface protein showed that V-ATPase ATP6L was conspicuously located in the plasma membrane of human HCC cells. Bafilomycin A1, a specific V-ATPase inhibitor, markedly slowed the intracellular pH (pHi) recovery after acid load in human HCC cells and retarded the growth of human HCC in orthotopic xenograft model. These results demonstrated that V-ATPase is up-regulated in human HCC and involved in the regulation of pHi of human HCC cells. The inhibition of V-ATPase can effectively retard the growth of HCC, indicating that V-ATPase may play an important role in the development and progression of human HCC, and targeting V-ATPase may be a promising therapeutic strategy against human HCC.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/enzimología , ATPasas de Translocación de Protón Vacuolares/fisiología , Adulto , Animales , Carcinoma Hepatocelular/patología , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , ATPasas de Translocación de Protón Vacuolares/análisis , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...