Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-2): 035102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632817

RESUMEN

The elastic-plastic Richtmyer-Meshkov instability of multiple interfaces is investigated by numerical simulation using a multimaterial solid mechanics algorithm based on an Eulerian framework. This Richtmyer-Meshkov instability problem is realized by a copper layer that is flanked by vacuum and a copper block of different material strength. The research efforts are directed to reveal the influence of the layer thickness and material strength on the deformation of the perturbed solid-vacuum interface impacted by an initial shock. By varying the initial thickness (x_{I}) of the copper layer and the yield stress (σ_{Y2}) of the copper block, two deformation modes, which have been identified as the broken mode and the stable mode, are closely scrutinized. For a fixed x_{I} and a decreasing σ_{Y2}, the reflected rarefaction waves (RRWs), developing after the initial shock impacts the perturbed interface 1 (I1) between vacuum and the copper layer, become stronger after traveling across the interface 2 (I2). Subsequently, the velocity of I2 becomes larger, causing the width of I1 to grow larger. This width growth of I1 leads to a final separation of the spike from I1 and, consequently, the deformation mode changes from the stable mode to the broken mode. For a fixed σ_{Y2} and a decreasing x_{I}, the RRWs impact I2 at an earlier moment with a greater strength and thus the deformation mode changes from the stable mode to the broken mode. Meanwhile, the comparison of the spike width of cases whose deformation mode is the broken mode shows that there exists a maximum value of rescaled spike width, at which the deformation mode changes from the stable mode to the broken mode.

2.
Nutrients ; 15(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836459

RESUMEN

Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Oryza , Ratones , Animales , Oryza/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Hepatopatías Alcohólicas/prevención & control , Hígado/metabolismo , Inflamación/metabolismo , Peso Corporal , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833954

RESUMEN

Acute hepatitis (AH) is a common liver disease with an increasing number of patients each year, requiring the development of new treatments. Hence, our work aimed to evaluate the therapeutic effect of Oryza sativa L. indica (purple rice) seed coat on concanavalin A (ConA)-induced AH and further reveal its potential mechanisms. Purple rice seed coat extract (PRE) was extracted with hydrochloric acid ethanol and analyzed through a widely targeted components method. We evaluated the effects of PRE on AH through histopathological examination, liver function, gut microbiota composition, and the intestinal barrier. The potential targets of PRE on AH were predicted by bioinformatics. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining, and corresponding kits were used to investigate PRE effects on predicting targets and associated signaling pathways in AH mice. In AH model mice, PRE treatment increased transformed mouse 3T3 cell double minute 2 (MDM2) expression to inhibit apoptosis; it also markedly downregulated protein kinase C alpha (PKCα), prostaglandin-endoperoxide synthase 1 (PTGS1), and mitogen-activated protein kinase 1 (MAPK1) activity to alleviate inflammation. Thus, PRE treatment also recovered the intestinal barrier, decreased the lipopolysaccharide (LPS) levels of plasma and the liver, enhanced liver function, and improved the composition of intestinal microbiota. In general, PRE targeting MDM2, PKCα, MAPK1, and PTGS1 ameliorated ConA-induced AH by attenuating inflammation and apoptosis, restoring the intestinal barrier, enhancing the liver function, and improving the gut microbiota, which revealed that the purple rice seed coat might hold possibilities as a therapeutic option for AH.


Asunto(s)
Hepatitis , Oryza , Humanos , Animales , Ratones , Oryza/metabolismo , Concanavalina A/toxicidad , Concanavalina A/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Hepatitis/tratamiento farmacológico , Hepatitis/etiología , Hepatitis/metabolismo , Transducción de Señal , Enfermedad Aguda , Inflamación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762652

RESUMEN

The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.


Asunto(s)
Autofagia , Glándulas Mamarias Animales , MicroARNs , Animales , Femenino , Ratones , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Células Epiteliales , Lactancia/genética , MicroARNs/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo
5.
J Ethnopharmacol ; 307: 116232, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36764561

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Elsholtzia bodinieri Vaniot, perennial herbs, a traditional Yunnan Chinese herbal medicine. Its whole herb can be used as commonly used herbs to cure fever, headache, inflammation, indigestion etc., and its tender tip can also be used as tea in Yunnan of China. However, the protective mechanism of Elsholtzia bodinieri Vaniot on acute lung injury (ALI) still needs to be explored. AIM OF STUDY: ALI is characterized by acute respiratory inflammation, which remains a significant source of morbidity and mortality. The current study with the aim of determining the therapeutic the efficacy of E. bodinieri Vaniot on lipopolysaccharide-induced ALI, moreover uncovered the underlying gene-regulated framework, so E. bodinieri Vaniot might serve as functional food for adjuvant therapy or therapeutic agent. MATERIALS AND METHODS: These potential pharmacological targets of E. bodinieri Vaniot against ALI were analyzed by multiple bioinformatics databases. E. bodinieri Vaniot methanol extract (EBE) was obtained by ultrasonic-assisted extraction method, and detected by UHPLC-ESI-HRMS/MS. These pyroptosis, inflammation and oxidative stress associated factors were measured using ELISA assay, western blotting, and histopathological examination to assess the effects of EBE. EcoTyper and immunofluorescence staining were employed to estimate macrophage polarization states in ALI lungs tissue. RESULTS: In ALI lung tissues, EBE treatment could increase B cell leukemia/lymphoma 2 (BCL2) to inhibit pyroptosis, downregulate prostaglandin-endoperoxide synthase 2 (PTGS2) to attenuate inflammation, upregulating NAD(P)H dehydrogenase, quinone 1 (NQO1) to alleviate oxidative stress and induce macrophage polarization toward the M2 phenotype. CONCLUSION: E. bodinieri Vaniot ameliorated ALI thought regulating pyroptosis, inflammation, oxidative stress and macrophage polarization, as well as could be a promising source for therapeutic agent.


Asunto(s)
Lesión Pulmonar Aguda , Piroptosis , Ratones , Animales , China , Lesión Pulmonar Aguda/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Macrófagos , Lipopolisacáridos/farmacología , Pulmón
6.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555290

RESUMEN

Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.


Asunto(s)
Lesión Pulmonar Aguda , Ciclooxigenasa 2 , Lamiaceae , NAD(P)H Deshidrogenasa (Quinona) , Extractos Vegetales , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Lesión Pulmonar Aguda/etiología , Ciclooxigenasa 2/genética , Inflamación/complicaciones , NAD(P)H Deshidrogenasa (Quinona)/genética , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Lamiaceae/química , Extractos Vegetales/farmacología
7.
Phys Rev E ; 104(5-2): 055104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942766

RESUMEN

The nonlinear evolution of mixing layer in cylindrical Rayleigh-Taylor (RT) turbulence is studied theoretically and numerically. The scaling laws including the hyperbolic cosine growth for outward mixing layer and the cosine growth for inward mixing layer of the cylindrical RT turbulence are proposed for the first time and verified reliably by direct numerical simulation of the Navier-Stokes equations. It is identified that the scaling laws for the cylindrical RT turbulence transcend the classical power law for the planar RT turbulence and can be recovered to the quadratic growth as cylindrical geometry effect vanishes. Further, characteristic time- and length scales are reasonably obtained based on the scaling laws to reveal the self-similar evolution features for the cylindrical RT turbulence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...