Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708177

RESUMEN

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Telomerasa , Telómero , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Telómero/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Telomerasa/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Inmunoterapia/métodos , Células Madre Neoplásicas/efectos de los fármacos
2.
NPJ Precis Oncol ; 8(1): 94, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654141

RESUMEN

Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.

3.
J Med Chem ; 66(21): 14700-14715, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37883180

RESUMEN

Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.


Asunto(s)
Inmunoconjugados , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Línea Celular Tumoral , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
4.
Int J Biol Macromol ; 253(Pt 6): 127105, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769779

RESUMEN

Trophoblast cell surface antigen 2 (Trop2) has emerged as a potential target for effective cancer therapy. In this study, we report a novel anti-Trop2 antibody IMB1636, developed using hybridoma technology. It exhibited high affinity and specificity (KD = 0.483 nM) in binding both antigens and cancer cells, as well as human tumor tissues. hIMB1636 could induce endocytosis, and enabled targeted delivery to the tumor site with an in vivo retention time of 264 h. The humanized antibody hIMB1636, acquired using CDR grafting, exhibited the potential to directly inhibit cancer cell proliferation and migration, and to induce ADCC effects. Moreover, hIMB1636 significantly inhibited the growth of MDA-MB-468 xenograft tumors in vivo. Mechanistically, hIMB1636 induced cell cycle arrest and apoptosis by regulating cyclin-related proteins and the caspase cascade. In comparison to commercialized sacituzumab, hIMB1636 recognized a conformational epitope instead of a linear one, bound to antigen and cancer cells with similar binding affinity, induced significantly more potent ADCC effects against cancer cells, and displayed superior antitumor activities both in vitro and in vivo. The data presented in this study highlights the potential of hIMB1636 as a carrier for the formulation of antibody-based conjugates, or as a promising candidate for anticancer therapy.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Moléculas de Adhesión Celular , Anticuerpos Monoclonales , Neoplasias/tratamiento farmacológico , Inmunoconjugados/farmacología , Proliferación Celular , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Biol Macromol ; 226: 1088-1099, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36435475

RESUMEN

OBJECTIVE: To prepare a recombinant EGFR-targeted fusion protein drug conjugate acting on telomere and telomerase; and evaluate its antitumor efficacy. METHODS: We prepared a recombinant fusion protein Fv-LDP-D3 which consists of the Fv fragment of an anti-EGFR monoclonal antibody (MAb), the apoprotein of lidamycin (LDP), and the third domain (D3) of human serum albumin (HSA); then generated the conjugate Fv-LDP-D3∼AE by integrating the active enediyne chomophore (AE) of lidamycin. Accordingly, in vitro and in vivo experiments were performed. RESULTS: As shown, Fv-LDP-D3 specifically bound to EGFR highly-expressing cancer cells and intensely entered K-Ras mutant cells via enhanced macropinocytosis. By in vivo imaging, Fv-LDP-D3 displayed intense accumulation and persistent retention in tumor-site. Furthermore, the conjugate Fv-LDP-D3∼AE displayed highly potent cytotoxicity to cancer cells with IC50 at 0.1 nM level. The conjugate induced telomere shortening and downregulation of telomerase and EGFR pathway related proteins. Fv-LDP-D3∼AE exhibited prominent antitumor efficacy against human colorectal cancer xenograft accompanying with significant increase of serum IFN-ß in athymic mice. CONCLUSION: The recombinant fusion protein conjugate that exhibits the capability of tumor-targeting drug delivery can induce telomere shortening and telomerase downregulation. The investigation may lay the foundation for the development of MAb-HSA domain-based fusion protein drug conjugates.


Asunto(s)
Inmunoconjugados , Telomerasa , Animales , Ratones , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Receptores ErbB/metabolismo , Regulación hacia Abajo , Acortamiento del Telómero , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoconjugados/farmacología , Telómero/metabolismo
6.
J Pharm Anal ; 12(2): 232-242, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35582405

RESUMEN

Folate receptor (FR) overexpression occurs in a variety of cancers, including pancreatic cancer. In addition, enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer. Furthermore, the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer. In this study, a novel FR-directed, macropinocytosis-enhanced, and highly cytotoxic bioconjugate folate (F)-human serum albumin (HSA)-apoprotein of lidamycin (LDP)-active enediyne (AE) derived from lidamycin was designed and prepared. F-HSA-LDP-AE consisted of four moieties: F, HSA, LDP, and AE. F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells. Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells. By in vivo optical imaging, F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice, showing clear and lasting tumor localization for 360 h. In the MTT assay, F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines. It also induced apoptosis and caused G2/M cell cycle arrest. F-HSA-LDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice. At well-tolerated doses of 0.5 and 1 mg/kg, (i.v., twice), the inhibition rates were 91.2% and 94.8%, respectively (P<0.01). The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.

7.
Biochem Pharmacol ; 201: 115057, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489393

RESUMEN

KRAS mutation and NF-κB both play crucial role in pancreatic cancer; in addition, defensin, the peptide mediator in innate immunity, can inhibit NF-κB. Assuming a strategy that targets both NF-κB and concomitantly the mutated KRAS indirectly via intensive macropinocytosis, we designed and generated a recombinant protein DF2-HSA which consists of two molecules of human beta-defensin 2 (HBD2) and a moiety of human serum albumin (HSA). As shown, the recombinant protein DF2-HSA markedly down-regulated NF-κB in both KRAS mutant MIA PaCa-2 cells and wild type BxPC-3 cells. Determined by confocal microscopy, the uptake of DF2-HSA in MIA PaCa-2 cells was more intense than that in BxPC-3 cells. The uptake was blocked by the specific inhibitor EIPA, indicating that DF2-HSA internalized via macropinocytosis. DF2-HSA displayed more potent cytotoxicity to cancer cells than HBD2. DF2-HSA induced apoptosis in cancer cells. Notably, DF2-HSA inhibited tumor cell spheroid formation, an effect comparable to that of salinomycin. DF2-HSA inhibited tumor cell migration and invasion. As detected with scanning electron microscopy, DF2-HSA strongly depleted filopodia on cell surface; and salinomycin induced similar changes. By in vivo imaging, DF2-HSA displayed intense tumor-site accumulation and lasting retention for over 14 days; however, HBD2 showed much less tumor-site accumulation and a shorter retention time for only 24 h. DF2-HSA suppressed the growth of pancreatic cancer MIA PaCa-2 xenograft in athymic mice; and its combination with gemcitabine achieved higher antitumor efficacy. In summary, the recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis is highly effective against pancreatic cancer.


Asunto(s)
FN-kappa B , Neoplasias Pancreáticas , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
8.
Drug Deliv ; 29(1): 1243-1256, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35416106

RESUMEN

The present study aimed to evaluate the anti-tumor efficacy of the epidermal growth factor receptor (EGFR)-targeting recombinant fusion protein Fv-LDP-D3 and its antibody-drug conjugate Fv-LDP-D3-AE against esophageal cancer. Fv-LDP-D3, consisting of the fragment variable (Fv) of an anti-EGFR antibody, the apoprotein of lidamycin (LDP), and the third domain of human serum albumin (D3), exhibited a high binding affinity for EGFR-overexpressing esophageal cancer cells, inhibited EGFR phosphorylation and down-regulated inosine monophosphate dehydrogenase type II (IMPDH2) expression. Fv-LDP-D3 was taken up by cancer cells through intensive macropinocytosis; it inhibited the proliferation and induced the apoptosis of esophageal cancer cells. In vivo imaging revealed that Fv-LDP-D3 displayed specific tumor-site accumulation and a long-lasting retention over a 26-day period. Furthermore, Fv-LDP-D3-AE, a pertinent antibody-drug conjugate prepared by integrating the enediyne chromophore of lidamycin into the Fv-LDP-D3 molecule, displayed highly potent cytotoxicity, inhibited migration and invasion, induced apoptosis and DNA damage, arrested cells at G2/M phase, and caused mitochondrial damage in esophageal cancer cells. More importantly, both of Fv-LDP-D3 and Fv-LDP-D3-AE markedly inhibited the growth of esophageal cancer xenografts in athymic mice at well tolerated doses. The present results indicate that Fv-LDP-D3, and Fv-LDP-D3-AE exert prominent antitumor efficacy associated with targeting EGFR, suggesting their potential as promising candidates for targeted therapy against esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Inmunoconjugados , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Enediinos/química , Enediinos/farmacología , Receptores ErbB/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/uso terapéutico , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacología , Ratones , Ratones Desnudos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Eur J Pharmacol ; 919: 174802, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143830

RESUMEN

IMB5046 is a nitrobenzoate microtubule inhibitor we reported previously. During screening of its structural analogues, we identified a novel compound IMB5476 with increased aqueous solubility. Here, its antitumor activity and the underlying mechanism were investigated. IMB5476 disrupted microtubule networks in cells and arrested cell cycle at G2/M phase. It inhibited purified tubulin polymerization in vitro. Competition assay indicated that it bound to tubulin at the colchicine pocket. Further experiments proved that it induced cell death by mitotic catastrophe and apoptosis. Notably, it was a poor substrate of P-glycoprotein and exhibited potent cytotoxicity against drug-resistant tumor cells. In addition, IMB5476 could inhibit angiogenesis in vitro. IMB5476 also inhibited the growth of drug-resistant KBV200 xenografts in mice. Conclusively, our data reveal a novel nitrobenzoate microtubule inhibitor with improved aqueous solubility and can overcome multidrug resistance.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Moduladores de Tubulina/farmacología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Microtúbulos/metabolismo , Moduladores de Tubulina/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochem Pharmacol ; 197: 114894, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968486

RESUMEN

Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However, how MIT affects immune check-point molecules remains unknown. In this study, we found CD47 expression was higher in melanoma of pan-tissue array. MIT inhibited CD47 expression both in mRNA and protein level in melanoma cells (SK-MEL-28 and B16). MIT inhibited c-Myc, Sp-1 and CD47 expression in a concentration-dependent way. MIT inhibited the surface CD47 expression and promoted the phagocytosis of SK-MEL-28 cells by THP-1 cells. We found MIT inhibited tumor growth in melanoma allograft mice and CD47 expression in tumor mass. We also found MIT upregulated PD-L1 expression in cancer cells possibly via inhibiting PD-L1 ubiquitination, increasing ROS and IFN-γ. Combination of MIT and anti-PD-1 antibody showed enhanced antitumor activity compared to MIT and anti-PD-1 antibody alone in MC38 allograft mice. Using immune checkpoint array we found MIT inhibited expression of FasL and Galectin3. These results suggest that MIT inhibits CD47 expression, while improves PD-L1 expression. Furthermore, the combination of MIT and anti-PD-1 antibody exerts potent antitumor effect.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Antígeno B7-H1/biosíntesis , Antígeno CD47/biosíntesis , Melanoma Experimental/metabolismo , Plicamicina/uso terapéutico , Animales , Antibióticos Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CD47/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Plicamicina/farmacología , Células THP-1 , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Acta Pharm Sin B ; 11(11): 3379-3392, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34900524

RESUMEN

Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.

12.
Mil Med Res ; 8(1): 63, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34879870

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype and occurs in approximately 15-20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, especially in TNBC. LR004-VC-MMAE is a new EGFR-targeting antibody-drug conjugate produced by our laboratory. This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action. METHODS: LR004-VC-MMAE was prepared by coupling a cytotoxic payload (MMAE) to an anti-EGFR antibody (LR004) via a linker, and the drug-to-antibody ratio (DAR) was analyzed by HIC-HPLC. The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset (GSE41313) and Western blotting. MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE (0, 0.0066, 0.066, 0.66, 6.6 nmol/L), and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation. The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VC-MMAE concentrations (2.5 and 5 nmol/L) with wound healing and Transwell invasion assays. Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells in MDA-MB-468 and MDA-MB-231 cells. The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo. Briefly, BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDA-MB-231 cells. Then they were randomly divided into 4 groups (n = 6 per group) and treated with PBS, naked LR004 (10 mg/kg), LR004-VC-MMAE (10 mg/kg), or doxorubicin, respectively. Tumor sizes and the body weights of mice were measured every 4 days. The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR, ERK, MEK phosphorylation and tumor stemness marker gene expression. RESULTS: LR004-VC-MMAE with a DAR of 4.02 were obtained. The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells (P < 0.01). LR004-VC-MMAE inhibited the proliferation of EGFR-positive TNBC cells, and the IC50 values of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were (0.13 ± 0.02) nmol/L and (0.66 ± 0.06) nmol/L, respectively, which were significantly lower than that of cells treated with MMAE [(3.20 ± 0.60) nmol/L, P < 0.01, and (6.60 ± 0.50) nmol/L, P < 0.001]. LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells. Moreover, LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability. In TNBC xenograft models, LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36. Surprisingly, tumor recurrence was not observed until the end of the experiment on day 52. In a mechanistic study, we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G2/M phase in MDA-MB-468 [(34 ± 5)% vs. (12 ± 2)%, P < 0.001] and MDA-MB-231 [(27 ± 4)% vs. (18 ± 3)%, P < 0.01] cells. LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4, Sox2, KLF4 and EpCAM. CONCLUSIONS: LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes. It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.


Asunto(s)
Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Receptores ErbB/metabolismo , Receptores ErbB/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Biol Macromol ; 187: 24-34, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34284054

RESUMEN

Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias/tratamiento farmacológico , Profármacos , Proteínas Recombinantes de Fusión , Albúmina Sérica Humana , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/metabolismo , Neoplasias/patología , Profármacos/química , Profármacos/uso terapéutico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/uso terapéutico , Albúmina Sérica Humana/química , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/uso terapéutico
14.
Cancer Chemother Pharmacol ; 87(3): 425-436, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33388950

RESUMEN

PURPOSE: To investigate the antitumor efficacy of pingyangmycin (PYM) in combination with anti-PD-1 antibody and determine the capability of PYM to induce immunogenic cell death (ICD) in cancer cells. METHODS: The murine 4T1 breast cancer and B16 melanoma models were used for evaluation of therapeutic efficacy of the combination of PYM with anti-PD-1 antibody. The ELISA kits were used to quantify the ICD related ATP and HMGB1 levels. The Transwell assay was conducted to determine the chemotaxis ability of THP-1 cell in vitro. The flow cytometry was used to measure reactive oxygen species level and analyze the ratio of immune cell subsets. RESULTS: PYM induced ICD in murine 4T1 breast cancer and B16 melanoma cells and increased the release of nucleic acid fragments that may further promote the monocytic chemotaxis. In the 4T1 murine breast cancer model, PYM alone, anti-PD-1 antibody alone, and their combination suppressed tumor growth by 66.3%, 16.1% and 77.6%, respectively. PYM markedly enhanced the therapeutic efficacy of anti-PD-1 antibody against 4T1 breast cancer. The calculated CDI (coefficient of drug interaction) indicated synergistic effect. Evaluated by graphic analysis, the nucleated cells intensity in the femur bone marrow remained unchanged. Histopathological observations revealed no noticeable toxico-pathological changes in the lung and various organs, indicating that the PYM and anti-PD-1 antibody combination exerted enhanced efficacy at well-tolerated dosage level. By the combination treatment, a panel of immunological changes emerged. The ratio of CD3+ cells, NK cells and NKT cells increased and Tregs decreased in peripheral blood. The DCs increased in the spleen. Prominent changes occurred in tumor infiltrating lymphocytes. The ratio of CD8+ cells increased, while that of CD4+ cells decreased; however, the ratio of CD3+ cells remained unchanged, implying that certain immunological responses emerged in the tumor microenvironment. PYM alone could also increase CD8+ cells and reduce CD4+ cells in tumor infiltrating lymphocytes. CONCLUSIONS: The studies indicate that PYM, as an ICD inducer with mild myelosuppression effect, may enhance the therapeutic efficacy of anti-PD-1 antibody in association with tumor infiltrating CD8+ T cell augmentation.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Mamarias Animales/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bleomicina/administración & dosificación , Bleomicina/análogos & derivados , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Femenino , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Mamarias Animales/patología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología
15.
Cancer Biol Ther ; 21(8): 749-757, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32644888

RESUMEN

Previous studies have shown that DBDx, a combination consisting of dipyridamole, bestatin and dexamethasone is highly effective against several cancer xenografts in athymic mice. Here the therapeutic effects of DBDx and its combination with gemcitabine or capcitabine against human pancreatic cancer xenografts and the mechanism were studied. In vivo experiments performed in athymic mice showed that the antitumor efficacy of DBDx was much stronger than that of gemcitabine or capecitabine alone. Notably, the combination of DBDx and gemcitabine or capcitabine further enhanced the efficacy. In the case of DBDx (242 mg/kg) plus gemcitabine (100 mg/kg), tumor weight decreased about 97.7%, and tumor sizes were shrinking during the treatment. In the case of DBDx (242 mg/kg) plus capecitabine (718.7 mg/kg), tumor weight decreased about 94.9%. Moreover, DBDx and its combinations obviously prolonged theoverall survival of mice compared with gemcitabine or capcitabine alone. DBDx-based drug combination therapy showed no obvious systematic toxicity. The gene expression profile analysis showed that the genes changed by DBDx were related to immune system and tumor vasculature. The result of protein array showed that the changed proteins in the serum of treated mice were related to immune and inflammation system. These results show that DBDx-based drug combinations, a new strategy which integrates the use of low-cytotoxic drugs and cytotoxic chemotherapeutics, are highly effective regimens against human pancreatic cancer in athymic mice at well tolerated doses. DBDx-based drug combination therapy might provide new options for the treatment of pancreatic cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Anciano , Animales , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Cell Mol Med ; 24(13): 7228-7238, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452639

RESUMEN

Microtubule-depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule-depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046-induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock-down expression of FAK inhibited IMB5046-induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF-H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046-induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule-depolymerizing agents to be used as vascular disrupting agents.


Asunto(s)
Benzoatos/farmacología , Extensiones de la Superficie Celular/metabolismo , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Microtúbulos/metabolismo , Morfolinas/farmacología , Miosinas Cardíacas/metabolismo , Extensiones de la Superficie Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinolonas/farmacología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/efectos de los fármacos , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Sulfonas/farmacología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
17.
Oncol Rep ; 43(3): 851-863, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32020213

RESUMEN

Efficient enrichment and transmembrane transport of cytotoxic reagents are considered to be effective strategies to increase the efficiency and selectivity of antitumor drugs targeting solid tumors. In the present study, a recombinant protein ABD­LDP­Ec consisting of the albumin­binding domain (ABD), the apoprotein (LDP) of lidamycin (LDM) and an EGFR­targeting oligopeptide (Ec) was prepared by DNA recombination and bacterial fermentation, and was integrated with the enediyne chromophore (AE) of lidamycin to generate its enediyne­integrated analogue ABD­LDP­Ec­AE. ABD­LDP­Ec exhibited high binding capacity to both albumin and EGFR­positive pancreatic cancer cells, and was internalized into the cytoplasm through receptor­mediated endocytosis and albumin­driven macropinocytosis of K­ras mutant cells. In animal experiments, ABD­LDP­Ec demonstrated notable selective distribution in pancreatic carcinoma xenografts by passive targeting of albumin captured in the blood and was retained in the tumor for 48 h. ABD­LDP­Ec and ABD­LDP­Ec­AE exhibited inhibitory activity in cell proliferation and AsPC­1 xenograft growth, and ABD­LDP­Ec­AE increased the tumor growth inhibition rate by 20% compared with natural LDM. The results indicated that the introduction of ABD­based multi­functional drug delivery may be an effective approach to improve the efficacy of antitumor drugs, especially for K­ras mutant cancers.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Albúminas/química , Albúminas/genética , Aminoglicósidos/química , Aminoglicósidos/genética , Aminoglicósidos/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Enediinos/química , Enediinos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Xenoinjertos , Humanos , Ratones , Mutación/genética , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Péptidos/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos/genética , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Biol Ther ; 21(4): 332-343, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906826

RESUMEN

Gemcitabine (Gem) is currently used as the first-line therapy for liver and pancreatic cancer but has limited efficacy in most cases. Dexamethasone (Dex) have been applied as a chemoprotectant and chemosensitizer in cancer chemotherapy. This study further explored the potential of combination of Gem and Dex and tested the hypothesis that glucocorticoid receptor signaling is essential for the synergistic antitumor activity. In the HepG2 and AsPC-1 xenograft models, the combination treatment showed a significantly synergistic antitumor activity. Immunohistochemistry of post-treatment tumors showed a significant decrease in proliferation and angiogenesis as compared to either of the treatments alone. Dex alone and the combination with Gem inhibited the expression of glucocorticoid receptor. The combination of Dex and Gem showed synergistic cytotoxicity in cell lines in vitro. The antiproliferative synergism is prevented by used glucocorticoid receptor (GR) small interfering RNA, demonstrating that the glucocorticoid receptor is required for the antiproliferative synergism of Gem and Dex. The inhibition of glucocorticoid receptor signaling pathway and induction of apoptosis via activation of caspases 3, 8 and 9, PARP, contributed to the synergistic effect of this combination therapy. These results demonstrate that Dex could potentiate the antitumor efficacy of Gem. The synergistic antitumor activity of the combination of Dex and Gem was through glucocorticoid receptor signaling. Taken together, a combination of Dex and Gem shows a significant synergistic antitumor activity and lesser toxicity both in vitro and in vivo and could be a combination chemotherapy for the treatment of highly expression of glucocorticoid receptor patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Glucocorticoides/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Dexametasona/administración & dosificación , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
19.
Front Oncol ; 9: 861, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555598

RESUMEN

The 5-year survival rate of patients with B cell lymphoma is about 50% after initial diagnosis, mainly because of resistance to chemotherapy. Hence, it is necessary to understand the mechanism of chemo-resistance and to explore novel methods to circumvent multidrug resistance. Previously, we showed that an engineered cytotoxic fusion protein anti-CD19(Fab)-LDM (lidamycin), can induce apoptosis of B-lymphoma cells. Herein, we successfully established an adriamycin (ADR)-resistant B cell lymphoma cell line BJAB/ADR. The mRNA and protein level of ATP-binding cassette subfamily B member 1 (ABCB1) were significantly overexpressed in BJAB/ADR cells. Increased efflux function of ABCB1 was observed by analyzing intracellular accumulation and efflux of Rhodamine 123. The efflux of Rhodamine 123 could be significantly ameliorated by verapamil. Treatment with anti-CD19(Fab)-LDM at different concentrations induced cytotoxic response of BJAB/ADR cells similar to that of the sensitive cells. In vivo studies showed that anti-CD19(Fab)-LDM had better antitumor effect in BJAB and BJAB/ADR cell lymphoma xenografts compared with ADR or LDM treatment alone. Taken together, anti-CD19(Fab)-LDM can effectively inhibit the growth of BJAB/ADR cells both in vitro and in vivo. Anti-CD19(Fab)-LDM could be a promising molecule for the treatment of drug resistant cancers.

20.
Cancer Cell Int ; 19: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139022

RESUMEN

BACKGROUND: Pancreatic cancer stem cells (CSCs), a special population of cells, renew themselves infinitely and resist to various treatment. Gramicidin A (GrA), an ionophore antibiotic derived from microorganism, can form channels across the cell membrane and disrupt cellular ionic homeostasis, leading to cell dysfunction and death. As reported, the ionophore antibiotic salinomycin (Sal) has been proved to kill CSCs effectively. Whether GrA owns the potential as a therapeutic drug for CSCs still remains unknown. This study investigated the effect of GrA on pancreatic CSCs and the mechanism. METHODS: Tumorsphere formation assay was performed to assess pancreatic CSCs self-renewal potential. In vitro hemolysis assay was determined to test the borderline concentration of GrA. CCK-8 assay was used to detect pancreatic cancer cell proliferation capability. Flow cytometry was performed to detect cell apoptosis and mitochondrial membrane potential. Scanning and transmission electron microscopy was used to observe ultrastructural morphological changes on cell membrane surface and mitochondria, respectively. Western blot analysis was used to determine relative protein expression levels. Immunofluorescence staining was performed to observe CD47 re-distribution. RESULTS: GrA at 0.05 µM caused tumorspheres disintegration and decrease in number of pancreatic cancer BxPC-3 and MIA PaCa-2 cells. GrA and Sal both inhibited cancer cell proliferation. The IC50 values of GrA and Sal for BxPC-3 cells were 0.025 µM and 0.363 µM; while for MIA PaCa-2 cells were 0.032 µM and 0.163 µM, respectively. Compared on equal concentrations, the efficacy of GrA was stronger than that of Sal. GrA at 0.1 µM or lower did not cause hemolysis. GrA induced ultrastructural changes, such as the decrease of microvilli-like protrusions on cell surface membrane and the swelling of mitochondria. GrA down-regulated the expression levels of CD133, CD44, and CD47; in addition, CD47 re-distribution was observed on cell surface. Moreover, GrA showed synergism with gemcitabine in suppressing cancer cell proliferation. CONCLUSIONS: The study found that GrA was highly active against pancreatic CSCs. It indicates that GrA exerts inhibitory effects against pancreatic CSCs associated with CD47 down-regulation, implying that GrA might play a positive role in modulating the interaction between macrophages and tumor cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...