Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1385896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715606

RESUMEN

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Asunto(s)
Aminoácidos de Cadena Ramificada , Lactancia , Metabolómica , Leche , Rumen , Animales , Bovinos , Femenino , Aminoácidos de Cadena Ramificada/metabolismo , Rumen/metabolismo , Metabolómica/métodos , Leche/química , Leche/metabolismo , Metabolismo Energético , Embarazo , Suplementos Dietéticos , Alimentación Animal/análisis , Paridad , Estrés Oxidativo , Metabolismo de los Lípidos , Metaboloma
2.
Front Vet Sci ; 11: 1359234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435365

RESUMEN

Inositol is a bioactive factor that is widely found in nature; however, there are few studies on its use in ruminant nutrition. This study investigated the effects of different inositol doses and fermentation times on rumen fermentation and microbial diversity, as well as the levels of rumen and blood metabolites in sheep. Rumen fermentation parameters, microbial diversity, and metabolites after different inositol doses were determined in vitro. According to the in vitro results, six small-tailed Han sheep fitted with permanent rumen fistulas were used in a 3 × 3 Latin square feeding experiment where inositol was injected into the rumen twice a day and rumen fluid and blood samples were collected. The in vitro results showed that inositol could increase in vitro dry matter digestibility, in vitro crude protein digestibility, NH3-N, acetic acid, propionic acid, and rumen microbial diversity and affect rumen metabolic pathways (p < 0.05). The feeding experiment results showed that inositol increased the blood concentration of high-density lipoprotein and IgG, IgM, and IL-4 levels. The rumen microbial composition was significantly affected (p < 0.05). Differential metabolites in the rumen were mainly involved in ABC transporters, biotin metabolism, and phenylalanine metabolism, whereas those in the blood were mainly involved in arginine biosynthesis and glutathione and tyrosine metabolism. In conclusion, inositol improves rumen function, affects rumen microorganisms and rumen and blood metabolites and may reduce inflammation, improving animal health.

3.
J Hazard Mater ; 465: 133376, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38159518

RESUMEN

Deoxynivalenol contamination in feed and food, pervasive from growth, storage, and processing, poses a significant risk to dairy cows, particularly when exposed to a high-starch diet; however, whether a high-starch diet exacerbates these negative effects remains unclear. Therefore, we investigated the combined impact of deoxynivalenol and dietary starch on the production performance, rumen function, and health of dairy cows using metabolomics and 16 S rRNA sequencing. Our findings suggested that both high- and low-starch diets contaminated with deoxynivalenol significantly reduced the concentration of propionate, isobutyrate, valerate, total volatile fatty acids (TVFA), and microbial crude protein (MCP) concentrations, accompanied by a noteworthy increase in NH3-N concentration in vitro and in vivo (P < 0.05). Deoxynivalenol altered the abundance of microbial communities in vivo, notably affecting Oscillospiraceae, Lachnospiraceae, Desulfovibrionaceae, and Selenomonadaceae. Additionally, it significantly downregulated lecithin, arachidonic acid, valine, leucine, isoleucine, arginine, and proline metabolism (P < 0.05). Furthermore, deoxynivalenol triggered oxidative stress, inflammation, and dysregulation in immune system linkage, ultimately compromising the overall health of dairy cows. Collectively, both high- and low-starch diets contaminated with deoxynivalenol could have detrimental effects on rumen function, posing a potential threat to production performance and the overall health of cows. Notably, the negative effects of deoxynivalenol are more pronounced with a high-starch diet than a low-starch diet.


Asunto(s)
Microbiota , Leche , Tricotecenos , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/fisiología , Rumen/metabolismo , Dieta/veterinaria , Almidón/metabolismo , Alimentación Animal/análisis , Fermentación
4.
Food Sci Nutr ; 11(9): 5248-5257, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701190

RESUMEN

This study evaluated the effects of antimicrobial peptide (AMP) and tributyrin (TB) on dairy calves in terms of growth performance, immunity, oxidative stress, and intestinal microflora. A total of 40 female calves were divided into four treatment groups (n = 10): basal diet +0.015% essential oil, basal diet +0.03% AMP, basal diet +0.15% TB, and basal diet +0.03% AMP + 0.15% TB. AMP and TB supplementation increased the average daily gain (ADG) and weaning weight, while reducing diarrhea occurrence. Additionally, AMP and TB supplementation reduced the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), while increasing superoxide dismutase (SOD) levels and serum immunoglobulin M (IgM) levels. However, the combined use of AMP and TB did not significantly affect the average daily feed intake, ADG, weaning weight, or diarrhea incidence but decreased ROS levels, while increasing SOD levels as well as MDA and IgM levels. Moreover, AMP and TG supplementation increased the relative abundance of several beneficial fiber- and mucin-degrading bacteria in the gut, in contrast to combined AMP and TB supplementation. The 16S rRNA results showed that AMP supplementation significantly increased the relative abundance of Rikenellaceae_RC9_gut_group, Ruminococcaceae_UCG-014 and [Eubacterium]_coprostanoligenes group (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-005 and Christensenellaceae_R-7_group (p < .01). The TB supplementation significantly increased the abundances of Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-005 (p < .01), and significantly decreased the relative abundances of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). The combined use of AMP and TB significantly increased the relative abundance of Rikenellaceae_RC9_gut_group and Bacteroides (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). In summary, diets supplemented with either AMP or TB improved the intestinal microflora, growth performance, and health of weaned calves, but combined use was detrimental to calf performance.

5.
Food Sci Nutr ; 11(6): 3601-3615, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324878

RESUMEN

Processing can affect milk properties and alter the composition of milk metabolites, which has corresponding effects on milk flavor and quality. It is quite important to study the safe quality control of milk processing. Therefore, the purpose of this study was to identify metabolites at different steps of ultra-high-temperature-sterilized (UHT) milk processing using gas chromatography-mass spectrometry (GC-MS). These steps included raw milk, pasteurized milk (80°C for 15 s), semi-finished milk (after pasteurizing, it was homogenized at 75°C with pressure of 250 bar), UHT milk (at 140°C for 10 s), and finished milk (homogenized UHT milk). A total of 66 metabolites were identified across all samples, including 30 metabolites in the chloroform layers of the milk samples and 41 metabolites in the water layers; 5 metabolites were found in both layers. The metabolites were primarily fatty acids, amino acids, sugars, and organic acids. For example, pasteurized and ultra-high-temperature-sterilized kinds of milk had lactose contents similar to those of raw milk, with increases in saturated fatty acids such as hexadecanoic acid and octadecanoic acid. Additionally, these findings indicated that these methods of processing can affect the contents of some components of milk. Therefore, from the perspective of milk's nutritional value and consumer health, the excessive heating of dairy products should be avoided and the milk heat treatment process should be standardized from the source.

6.
Front Microbiol ; 14: 1065721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937312

RESUMEN

The diet structure is very important for the growth and development of calves. This study aimed to investigate the effects of dietary protein-to-starch metabolizable energy ratios (DPSRs) on growth performance, blood index, and gastrointestinal microbiota of calves. Forty-eight Holstein bull calves were fed six dietary DPSRs including A20-35 (20% CP and 35% starch), B20-30, C20-25, D22-35, E22-30, and F22-25 at d 4 to d 60, and then changed to another six dietary DPSRs at d 61 to d 180 (A18-30, B18-27, C18-24, D20-30, E20-27, and F20-24). Twelve calves (d 60) from groups A20-35, C20-25, D22-35, and F22-25 (n = 3) and another twelve calves (d 180) from groups A18-30, C18-24, D20-30, and F20-24 (n = 3) were euthanized. The growth performance parameters were measured. Blood, ruminal fluid, and cecum digesta were collected for further analysis. Results showed heart girth gain of B18-27 was significantly higher than A18-30, C18-24, and heart girth gain (d 180) was significantly affected by protein × starch (DPSRs; p < 0.05). Blood urea nitrogen (BUN; d 60) in C20-25 was significantly higher than A20-35 and B20-30 (p < 0.05). The BUN (d 180) in D20-30 was significantly higher than A18-30 (p < 0.05). The BUN was significantly affected by protein × starch (p < 0.05) on d 60. The albumin (ALB) levels in C20-25 and C18-24 were significantly higher than that in A20-35 on d 60 and A18-30 on d 180, respectively (p < 0.05). The ALB level in D22-35 on d 60 and E20-27 on d 180 was significantly higher than that in other groups (p < 0.05). The ALB level was significantly affected by protein and starch, respectively, on d 60 (p < 0.05). In the rumen, the genera Roseburia (C20-25) and Dialister (D22-35), Prevotellaceae UCG-001 (C18-24), Erysipelotrichaceae UCG-002, and Anaerovorax (F20-24) were found in significant higher relative abundances than those in other groups (p < 0.05). In the cecum, the genera Bacteroides and Eisenbergiella (F22-25), Ruminiclostridium_1 and Candidatus Stoquefichus (A18-30), Erysipelotrichaceae UCG-004 and Tyzzerella 4 (D20-30), and Prevotellaceae UCG-003 and Klebsiella (F20-24) were found in significant higher abundances than those in other groups (p < 0.05). Collectively, these results indicated that the heart girth, BUN, ALB, and gastrointestinal microbiota responded distinctly to differing DPSRs.

7.
Vet Med Sci ; 9(1): 429-442, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251757

RESUMEN

BACKGROUND: Even if breed, parity, dietary and environmental management are same, dairy cows still have notable differences in milk yield that may be underpinned by physiologic differences. OBJECTIVES: This study aimed to investigate the physiological dissimilarities of dairy cows with different milk yields. METHODS: Thirty cows were sorted into high milk-yielding cows (group H: 58.93±2.31 kg/day), moderate milk-yielding cows (group M: 44.99±0.54 kg/day), and low milk-yielding cows (group L: 24.99±6.83 kg/day) according to milk yield. Blood was collected and serum parameters were assessed. Rumen fluid was collected for the evaluation of rumen fermentation parameters (RFPs) and bacterial community composition (BCC). RESULTS: Serum prolactin, growth hormone, glutathione peroxidase, immunoglobulin A and non-esterified fatty acid had a significantly positive correlation with milk yield (p < 0.05), whereas serum glucagon and total antioxidant capacity had a significantly negative correlation with milk yield (p < 0.05). The concentration of valeric acid and the ratio of acetic acid to propionic acid in the rumen fluid in group H was significantly lower than that in group L (p < 0.05). The concentration of acetic acid and butyric acid in group H was significantly lower than that in groups M and L (p < 0.05). The relative abundances of Ruminococcaceae_NK4A214_group, Prevotella_1, Rikenellaceae_RC9_gut_group, Christensenellaceae_R-7_group, Muribaculaceae, and Ruminococcus_2 were negatively correlated with milk yield, whereas the relative abundance of Succinivibrionaceae_UCG-001, Lachnospiraceae_NK3A20_group, Shuttleworthia and Dialister were positively correlated with milk yield (p < 0.05). CONCLUSIONS: This study indicates that dairy cows with different milk yields have clear divergence in serum indicators, RFPs, BCC and rumen microbial metabolism.


Asunto(s)
Lactancia , Leche , Embarazo , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/fisiología , Dieta/veterinaria , Butiratos/metabolismo , Acetatos/metabolismo , Bacterias
8.
Front Vet Sci ; 10: 1330841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38313769

RESUMEN

Hemicellulose is an important polysaccharide in ruminant nutrition, but it has not been studied as thoroughly as cellulose. Further research is needed to explore supplements that can improve its digestibility and ruminal buffering effects. Our previous research demonstrated the efficacy of oxalic acid (OA) as an essential nutrient in yeast culture (YC) for improving rumen fermentation performance. Consequently, we conducted in vitro rumen digestion experiments to examine the effects of YC and OA on rumen fermentation and bacterial composition. Two diets containing different levels of hemicellulose were formulated: diet 1 with 10.3% and diet 2 with 17% hemicellulose. Three levels of YC (0.00, 0.625, and 1.25 g/kg) and three doses of OA (0.0, 0.4, and 0.8 g/kg, DM) were added into each diet with a 3 × 3 factorial design. A comprehensive assessment was conducted on a total of 18 experimental treatments at fermentation periods of 0, 6, 12, 24, and 48 h. In the first experiment (diet 1), the supplementation of YC, OA, and their interaction significantly increased in vitro DM disappearance (IVDMD) and NDF disappearance (IVNDFD; p < 0.001). In the second experiment (diet 2), the supplementation of OA and the interaction between YC and OA (p < 0.001) increased IVDMD and IVCPD, but had no significant effects on IVNDFD. The interactions of YC and OA significantly increased ammonia nitrogen (p < 0.001). The production of acetic acid, propionic acid, and total volatile fatty acids (TVFA), and pH levels were significantly higher in treatments supplemented with YC and OA (p < 0.001). YC and OA in both diets significantly altered the rumen bacterial community leading to increased Shannon and Simpson diversity indices (p < 0.001). In both diets, OA supplementation significantly increased the relative abundance of the phylum Bacteroidetes and Prevotella genus. The result also showed a positive correlation between the Prevotella and Selenomonas genera with IVDMD, IVNDFD, propionic acid, and TVFA production, suggesting that these dominant bacteria enhanced nutrient disappearance in the rumen. In conclusion, adding YC and OA resulted in modifications to the bacterial community's composition and diversity, and improved nutrient disappearance. These changes indicate improved rumen fermentation efficiency, which is promising for future in vivo studies.

9.
Animals (Basel) ; 12(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35804617

RESUMEN

The objective of the study was to elucidate the stearoyl-coenzyme A desaturase (SCD1)-dependent gene network of c9, t11-CLA biosynthesis in MAC-T cells from an energy metabolism perspective. The cells were divided into the CAY group (firstly incubated with CAY10566, a chemical inhibitor of SCD1, then incubated with trans-11-octadecenoic acid, (TVA)), the TVA group (only TVA), and the control group (without CAY, TVA). The c9, t11-CLA, and TVA contents were determined by gas chromatography. The mRNA levels of SCD1 and candidate genes were analyzed via real-time PCR. Tandem mass tag (TMT)-based quantitative proteomics, bioinformatic analysis, parallel reaction monitoring (PRM), and small RNA interference were used to explore genes involved in the SCD1-dependent c9, t11-CLA biosynthesis. The results showed that the SCD1 deficiency led by CAY10566 blocked the biosynthesis of c9, t11-CLA. In total, 60 SCD1-related proteins mainly involved in energy metabolism pathways were primarily screened by TMT-based quantitative proteomics analysis. Moreover, 17 proteins were validated using PRM analysis. Then, 11 genes were verified to have negative relationships with SCD1 after the small RNA interference analysis. Based on the above results, we concluded that genes involved in energy metabolism pathways have an impact on the SCD1-dependent molecular mechanism of c9, t11-CLA biosynthesis.

10.
Oxid Med Cell Longev ; 2022: 4013575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360198

RESUMEN

Leucine and isoleucine possess antioxidative and anti-inflammatory properties. However, their underlying protective mechanisms against oxidative damage remain unknown. Therefore, in this study, the protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in a bovine mammary epithelial cell lines (MAC-T cells) were investigated. Briefly, MAC-T cells exposed or free to H2O2 were incubated with different combinations of leucine and isoleucine. The cellular relative proliferation rate and viability, oxidative stress indicators, and inflammatory factors were determined by specific commercial kits. The genes related to barrier functions was measured by real-time quantitative PCR. The protein expression differences were explored by 4D label-free quantitative proteomic analyses and validated by parallel reaction monitoring. The results revealed that leucine and isoleucine increased cell proliferation, total antioxidant status (TAS), and the relative mRNA expression of occludin, as well as decreased malondialdehyde (MDA), total oxidant status (TOS)/TAS, IL-6, IL-1ß, and TOS. When leucine and isoleucine were combined, MDA, TOS/TAS, and the relative mRNA expression levels of claudin-1, occludin, and zonula occludens-1 increased when compared to leucine or isoleucine alone. Proteomics analyses revealed that leucine significantly upregulated the propanoate metabolism; valine, leucine, and isoleucine degradation; and thermogenesis pathways, whereas isoleucine significantly upregulated the peroxisome and propanoate metabolism pathways. In conclusion, leucine protected MAC-T cells from H2O2-induced oxidative stress by generating more ATP to supplement energy demands, and isoleucine improved the deficit in peroxisome transport and promoted acetyl-CoA production. The findings of this study enhance our understanding of the protective mechanisms of leucine and isoleucine against oxidative damage.


Asunto(s)
Peróxido de Hidrógeno , Isoleucina , Animales , Bovinos , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/toxicidad , Isoleucina/metabolismo , Isoleucina/farmacología , Leucina/farmacología , Estrés Oxidativo , Proteómica
11.
Front Nutr ; 8: 727714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540880

RESUMEN

High levels of starch is known to have positive effects on both energy supply and milk yield but increases the risk of rumen acidosis. The use of sugar as a non-structural carbohydrate could circumvent this risk while maintaining the benefits, but its effects and that of the simultaneous use of both sugar and starch are not as well-understood. This study aimed to evaluate the effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial community composition in vitro in a 4 ×4 factorial experiment. Sixteen dietary treatments were formulated with 4 levels of sugar (6, 8, 10, and 12% of dietary dry matter), and 4 levels of starch (21, 23, 25, and 27% of dietary dry matter). Samples were taken at 0.5, 1, 3, 6, 12, and 24 h after cultivation to determine the disappearance rate of dry matter, rumen fermentation parameters and bacterial community composition. Butyric acid, gas production, and Treponema abundance were significantly influenced by the sugar level. The pH, acetic acid, and propionic acid levels were significantly influenced by starch levels. However, the interactive effect of sugar and starch was only observed on the rate of dry matter disappearance. Furthermore, different combinations of starch and sugar had different effects on volatile fatty acid production rate, gas production rate, and dry matter disappearance rate. The production rate of rumen fermentation parameters in the high sugar group was higher. Additionally, increasing the sugar content in the diet did not change the main phylum composition in the rumen, but significantly increased the relative abundance of Bacteroidetes and Firmicutes phyla, while the relative abundance of Proteobacteria was reduced. At the genus level, the high glucose group showed significantly higher relative abundance of Treponema (P < 0.05) and significantly lower relative abundance of Ruminobacter, Ruminococcus, and Streptococcus (P < 0.05). In conclusion, different combinations of sugar and starch concentrations have inconsistent effects on rumen fermentation characteristics, suggesting that the starch in diets cannot be simply replaced with sugar; the combined effects of sugar and starch should be considered to improve the feed utilization rate.

12.
Vet Med Sci ; 7(6): 2250-2259, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455709

RESUMEN

BACKGROUND: In highly intensive dairy farms, cows often suffer from metabolic disorders that cause severe oxidative stress. OBJECTIVES: This study aimed to observe correlations and associations of oxidative stress-related indicators with milk compositions and metabolites. METHODS: Twenty-two multiparous Holstein dairy cows in early lactation were randomly selected from a commercial dairy farm. The morning milk was collected for composition and metabolites analysis. Blood was sampled via the tail vein to analyze oxidative stress-related indicators (reactive oxygen species, ROS; catalase, CAT; superoxide dismutase, SOD; glutathione peroxidase, GPX; malondialdehyde, MDA) and metabolites. RESULTS: Results showed that ROS were positively correlated with CAT, GPX, SOD, and MDA. However, the levels of CAT, GPX, and SOD were negatively related to milk fat (P  <  0.05). Nineteen serum and 7 milk metabolites were selected from detectable metabolites according to their correlations with ROS, CAT, GPX, and SOD (P  <  0.05). Metabolic pathway analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that these metabolites are primarily involved in the metabolic pathways of carbohydrates and amino acids. CONCLUSIONS: This study gave us a better understanding on oxidative stress that ROS not only increased oxidative damage (MDA) in dairy cows, but also altered some metabolites involved in amino acid and carbohydrate metabolism.


Asunto(s)
Lactancia , Leche , Animales , Antioxidantes/metabolismo , Bovinos , Femenino , Leche/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 212-223, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31733004

RESUMEN

The objective of this study was to investigate the effects of yeast culture (YC) on the growth performance, caecal microbial community and metabolic profile of broilers. A total of 350 1-day-old healthy Arbor Acres broilers were randomly assigned to seven treatment groups. The first group received a basal diet without YC supplementation, whereas the remaining groups received a basal diet supplemented with either YC fermented for 12, 24, 36, 48 or 60 hr, or a commercial YC product (SZ2). MiSeq 16S rRNA high-throughput sequencing was used to investigate the bacterial community structure, and gas chromatography-mass spectrometry was used to identify the metabolites in the caeca of broilers. The broilers that received a diet supplemented with YC had a higher average daily gain and average daily feed intake than those received YC-free or SZ2-enriched diets. The feed conversion ratio (FCR) of YCs fermented for 24 hr resulted in the best feed efficiency, whereas the FCR of YC fermented for 60 hr resulted in poor feed efficiency (p < .05). In the caeca of broilers, the bacterial communities were well separated, as determined by principal component analysis, and the proportions of the eight genera were significantly different among the seven groups (p < .05). The genus Akkermansia was the most abundant when the diet supplemented with YC fermented for 24 hr (p < .05). Furthermore, the Firmicutes/Bacteroidetes ratio was positively correlated with the FCR in the caecum (r = .47, p < .005). Five differentially expressed metabolites (i.e., L-alanine, benzeneacetic acid, D-mannose, D-arabitol and cholesterol) were identified in the caeca of broilers that received diets supplemented with YCs fermented for 24 or 60 hr. In summary, the different fermentation times of the YCs can markedly improve the growth performance and FCR of broilers by altering the caecal microbial community, and the growth performance which is related to the changes in key metabolic pathways.


Asunto(s)
Ciego/microbiología , Pollos/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Levaduras/fisiología , Animales , Pollos/microbiología , Femenino , Fermentación , Masculino
14.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1274-1282, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31149756

RESUMEN

The effects of yeast culture (YC) supplementation and the dietary ratio of non-structural carbohydrate to fat (NSCFR) on growth performance, carcass traits and fatty acid profile of the longissimus dorsi (LD) muscle in lambs were determined in a 2 × 3 full factorial experiment. Thirty-six Small-tailed Han lambs were randomly divided into six groups with six replicates per group. The lambs were fed one of the six pelleted total mixed rations (TMRs) for 60 days after 15 adaption days. The six rations were formed by two NSCFRs (11.37 and 4.57) and three YC supplementation levels (0, 0.8 and 2.3 g/kg dietary dry matter). The average daily gain (ADG), dry matter intake (DMI) and feed conversion ratio (FCR) data of each lamb were recorded and calculated. All the lambs were slaughtered for determining carcass traits and fatty acid profile of the LD muscle. DMI was significantly increased (p < 0.05) in a quadratic fashion with 0.8 g/kg of YC supplementation. Carcass weight (CW) and dressing percentage (DP) were significantly increased (p < 0.05) in a linear fashion with 2.3 g/kg of YC supplementation. Animals fed with high-NSCFR diet had higher (p < 0.05) contents of myristoleic acid (C14:1), pentadecanoic acid (C15:0) and cis-10-heptadecenoic acid (C17:1), and lower (p < 0.05) stearic acid (C18:0) content in LD muscle than those fed with low-NSCFR diet. Moreover, ADG, growth rate (GR), backfat thickness (BFT), percentages of crude fat (CF) and crude protein (CP), SFAs, MUFAs and PUFAs in LD muscle, were significantly affected (p < 0.05) by interaction of dietary NSCFR and supplemental YC level. Overall, YC not only improved the growth performance and carcass traits of the animals but also modified the fatty acid profile of the LD muscle. Furthermore, the effects of YC supplementation may depend on dietary compositions.


Asunto(s)
Carbohidratos/administración & dosificación , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Músculo Esquelético/química , Ovinos/crecimiento & desarrollo , Levaduras , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal/efectos de los fármacos , Dieta/veterinaria , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Músculo Esquelético/fisiología
15.
Animals (Basel) ; 10(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905984

RESUMEN

This study was aimed at determining the effective ingredients of yeast culture (YC) for animal breeding. First, the contents of YCs obtained from various fermentation times were detected using gas-chromatography. A total of 85 compounds were identified. Next, 336 Arbor Acres (AA) broilers were randomly divided into seven experimental groups and fed a basal diet, diets supplemented with YCs obtained at various fermentation times, or SZ1 (a commercial YC product). A significant increase in body weight gain (BWG) and a significant decrease in feed conversion ratio (FCR) of AA broiler chicks were observed with YC supplementation. Additionally, most of blood and immunological indices were improved with YC supplementation. According to the production performance and the results of multivariate analysis, glycine, fructose, inositol, galactose, and sucrose were found as the potential effective compounds of YC and were involved in metabolic pathways including glycine, serine, and threonine metabolism. Supplementation with diets based on combinations of effective compounds improved weight gain, feed efficiency, serum immunoglobulin A, and immunoglobulin G, but decreased blood urea concentration. These findings suggest YCs as effective and harmless feed additives with improved nutritional properties for broiler chicks.

16.
Lipids ; 53(6): 647-652, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30277580

RESUMEN

Cis-9-conjugated, trans-11-conjugated linoleic acid (CLA) is known for its positive activities on human health. The synthesis of cis-9, trans-11 CLA in mammary glands is generally thought to be catalyzed by stearoyl-CoA desaturase 1 (SCD1), but this has not been rigorously established. In this study, we hypothesized that the inhibition of SCD1 (by CAY10566) would block the synthesis of cis-9, trans-11 CLA in bovine mammary alveolar cells (MAC-T) cells. Results showed that MAC-T cells incubated with 10 nM CAY10566 for 12 h (CAY) produced less cis-9, trans-11 CLA (p < 0.01), lower 14:1/(14:1 + 14:0)% (p < 0.01), more trans-11 18:1 (TVA) accumulation (p < 0.01), and reduced SCD1 mRNA levels (p < 0.01) compared with the control group (CON). Moreover, the mRNA abundances of sterol regulatory element-binding protein 1 [SREBPF1], acyl-CoA synthetase short-chain family member 2 [ACSS2], and lipin 1 [LPIN1] were significantly elevated when SCD1 was inhibited in the CAY group (p < 0.05). Taken together, CAY10566 inhibition of SCD1 resulted in lower cis-9, trans-11 CLA synthesis ability, and SREBF1, ACSSS2, and LPIN1 were negatively associated with SCD1. These findings not only provide the direct evidence that cis-9, trans-11 CLA synthesis is catalyzed by SCD1, but also help us understand the responses of MAC-T cells to SCD1 inhibition.


Asunto(s)
Ácidos Linoleicos Conjugados/biosíntesis , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Animales , Biocatálisis , Bovinos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ácidos Linoleicos Conjugados/química , Estearoil-CoA Desaturasa/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...