Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Biophys Mol Biol ; 186: 39-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030044

RESUMEN

Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.


Asunto(s)
Cianobacterias , Ficobilisomas , Ficobilisomas/química , Ecosistema
2.
Front Bioeng Biotechnol ; 9: 673402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041232

RESUMEN

Cyanobacteria can acclimate to changing copper and iron concentrations in the environment via metal homeostasis, but a general mechanism for interpreting their dynamic relationships is sparse. In this study, we assessed growth and chlorophyll fluorescence of Synechocystis sp. PCC 6803 and investigated proteomic responses to copper and iron deductions. Results showed that copper and iron exerted reciprocal effect on the growth and photosynthesis of Synechocystis sp. PCC 6803 at combinations of different concentrations. And some proteins involved in the uptake of copper and iron and the photosynthetic electron transport system exhibit Cu-Fe proteomic association. The protein abundance under copper and iron deduction affected the photosynthetic electronic activity of Synechocystis sp. PCC 6803 and eventually affected the growth and photosynthesis. Based on these results, we hypothesize that the Cu-Fe proteomic association of Synechocystis sp. PCC 6803 can be elucidated via the uptake system of outer membrane-periplasmic space-inner plasma membrane-thylakoid membrane, and this association is mainly required to maintain electron transfer. This study provides a broader view regarding the proteomic association between Cu and Fe in cyanobacteria, which will shed light on the role of these two metal elements in cyanobacterial energy metabolism and biomass accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...