Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400417, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656661

RESUMEN

Herein, we report a highly selective production route for butadiene from γ-valerolactone over zeolite catalysts. The catalytic performance of eight zeolites with different framework topologies were compared, revealing that zeolites with narrower 10-membered ring channels exhibit enhanced selectivity of butadiene. Specifically, ZSM-35 and ZSM-22, featuring the narrowest 10-membered ring channels, demonstrate the highest butadiene selectivity to 61% and 59%, respectively. Notably, surface passivation of ZSM-35 leads to a remarkable increase in butadiene selectivity to 82%, maintaining a 99% conversion. Additionally, we propose a reaction network and identify cyclopentenone as a key intermediate in the transformation of γ-valerolactone to butadiene. Both experimental and theoretical results conclude that confinement effect of 10-membered ring channels improves the selectivity of butadiene.

2.
J Am Chem Soc ; 145(50): 27471-27479, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37993784

RESUMEN

Understanding chemical bond variations is the soul of chemistry as it is essential for any chemical process. The evolution of hydrogen bonds is one of the most fundamental and emblematic events during proton transfer; however, its experimental visualization remains a formidable challenge because of the transient timescales. Herein, by subtly regulating the proton-donating ability of distinct proton donors (zeolites or tungstophosphoric acid), a series of different hydrogen-bonding configurations were precisely manipulated. Then, an advanced two-dimensional (2D) heteronuclear correlation nuclear magnetic resonance (NMR) spectroscopic technique was utilized to simultaneously monitor the electronic properties of proton donors and acceptors (2-13C-acetone or trimethylphosphine oxide) through chemical shifts. Parabolic 1H-13C NMR relationships combined with single-well and double-well potential energy surfaces derived from theoretical simulations quantitatively identified the hydrogen bond types and allowed the evolution of hydrogen bonds to be visualized in diverse acid-base interaction complexes during proton transfer. Our findings provide a new perspective to reveal the nature and evolution of hydrogen bonds and confirm the superiority of 2D NMR techniques in identifying the subtle distinctions of various hydrogen-bonding configurations.

3.
ACS Appl Mater Interfaces ; 15(34): 40478-40487, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37591494

RESUMEN

Vapor-phase Beckmann rearrangement of cyclohexanone oxime (CHO) to ε-caprolactam (CPL) is still difficult to commercialize at the industrial scale due to its relatively low catalytic activity and poor lifetime. Herein, we synthesized a series of pure-silicon zeolites (including MFI, MEL, and -SVR) with three-dimensional 10-member-ring topolgies, diverse silanol status, and hierarchical porosity to investigate the synergistic effects of inner diffusivity and reactivity. S-1 zeolite of MFI-type topology with plentiful silanol nests exhibits a more preferable catalytic performance in terms of CHO conversion (99.7%) and CPL selectivity (89.7%), much higher than those of MEL- and -SVR-type zeolites mainly due to their diverse silanol distribution. With the construction of hierarchical porosity, S-1-P shows improved CPL selectivity of 94.1% owing to the enhanced diffusivity to shorten the retention time of the reactant and product molecules. The reaction mechanism and network have been further revealed by density functional theory (DFT) calculations and experimental designs, which indicate that silanol nests are major active sites due to their suitable interaction with CHO rather than terminal silanols. Particularly, the microenvironments of silanols can be modulated by alcohol solvents, ascribed to their different charge transfer and steric hindrance. Consequently, S-1-P shows superior CPL selectivity of 97.3% in ethonal solvents, which have higher adsorb energy of -0.627 eV with silanol nests than other alcohols. The present study not only provides a fundamental guide for the design of zeolite catalysts but also provides a reference for modulating the microenvironment of active sites according to the catalytic mechanism.

4.
J Am Chem Soc ; 145(31): 17284-17291, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489934

RESUMEN

Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.

5.
Adv Mater ; : e2305050, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417401

RESUMEN

Nanoporous carbons are very attractive for various applications including energy storage. Templating methods with assembled amphiphilic molecules or porous inorganic templates are typically used for the synthesis. Amongst the different members of this family, CMK-5-like structures that are constructed to consist of sub-10 nm amorphous carbon nanotubes and ultrahigh specific surface area due to their thin pore walls, have the best properties in various respects. However, the fabrication of such hollow-structured mesoporous carbons entails elaborately tailoring the surface properties of the template pore walls and selecting specific carbon precursors. Thus, very limited cases are successful. Herein, a versatile and general silanol-assisted surface-casting method to create hollow-structured mesoporous carbons and heteroatom-doped derivatives with numerous organic molecules (e.g., furfuryl alcohol, resol, 2-thiophene methanol, dopamine, tyrosine) and different structural templates is reported. These carbon materials exhibit ultrahigh surface area (2400 m2  g-1 ), large pore volume (4.0 cm3  g-1 ), as well as satisfactory lithium-storage capacity (1460 mAh g-1 at 0.1 A g-1 ), excellent rate capability (320 mAh g-1 at 5 A g-1 ), and very outstanding cycling performance (2000 cycles at 5 A g-1 ).

6.
Inorg Chem ; 62(28): 11152-11167, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37387483

RESUMEN

Climate change from anthropogenic carbon dioxide (CO2) emissions poses a severe threat to society. A variety of mitigation strategies currently include some form of CO2 capture. Metal-organic frameworks (MOFs) have shown great promise for carbon capture and storage, but several issues must be solved before feasible widespread adoption is possible. MOFs often exhibit reduced chemical stabilities and CO2 adsorption capacities in the presence of water, which is ubiquitous in nature and many practical settings. A comprehensive understanding of water influence on CO2 adsorption in MOFs is necessary. We have used multinuclear nuclear magnetic resonance (NMR) experiments at temperatures ranging from 173 to 373 K, along with complementary computational techniques, to investigate the co-adsorption of CO2 and water across various loading levels in the ultra-microporous ZnAtzOx MOF. This approach yields detailed information regarding the number of CO2 and water adsorption sites along with their locations, guest dynamics, and host-guest interactions. Guest adsorption and motional models proposed from NMR data are supported by computational results, including visualizations of adsorption locations and the spatial distribution of guests in different loading scenarios. The wide variety and depth of information presented demonstrates how this experimental methodology can be used to investigate humid carbon capture and storage applications in other MOFs.

7.
Nat Commun ; 14(1): 2531, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137908

RESUMEN

Hydroformylation is one of the largest industrially homogeneous processes that strongly relies on catalysts with phosphine ligands such as the Wilkinson's catalyst (triphenylphosphine coordinated Rh). Heterogeneous catalysts for olefin hydroformylation are highly desired but suffer from poor activity compared with homogeneous catalysts. Herein, we demonstrate that rhodium nanoparticles supported on siliceous MFI zeolite with abundant silanol nests are very active for hydroformylation, giving a turnover frequency as high as ~50,000 h-1 that even outperforms the classical Wilkinson's catalyst. Mechanism study reveals that the siliceous zeolite with silanol nests could efficiently enrich olefin molecules to adjacent rhodium nanoparticles, enhancing the hydroformylation reaction.

8.
J Phys Chem Lett ; 14(14): 3567-3573, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37017545

RESUMEN

The diffusion processes in zeolites are important for heterogeneous catalysis. Herein, we show that unique zeolites with "continuum intersecting channels" (e.g., BEC, POS, and SOV), in which two intersections are proximal, are greatly significant to the diffusion process with spontaneous switching of the diffusion pathway under varied loading. At low loading, the synergy of strong adsorption sites and molecular reorientation in intersections contribute to almost exclusive molecular diffusion in smaller channels. With an increase in molecular loading, the adsorbates are transported preferentially in larger channels mainly due to the lower diffusion barrier inside continuum intersection channels. This work demonstrates the ability to adjust the prior diffusion pathway by controlling the molecular loading, which may be beneficial for the separation of the product and byproduct in heterogeneous catalysis.

9.
J Am Chem Soc ; 145(14): 7712-7717, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36862978

RESUMEN

Zeolite molecular sieves with at least eight-membered rings are widely applied in industrial applications, while zeolite crystals with six-membered rings are normally regarded as useless products due to the occupancy of the organic templates and/or inorganic cation in the micropores that could not be removed. Herein, we showed that a novel six-membered ring molecular sieve (ZJM-9) with fully open micropores could be achieved by a reconstruction route. The mixed gas breakthrough experiments such as CH3OH/H2O, CH4/H2O, CO2/H2O, and CO/H2O at 25 °C showed that this molecular sieve was efficient for selective dehydration. Particularly, a lower desorption temperature (95 °C) of ZJM-9 than that (250 °C) of the commercial 3A molecular sieve might offer an opportunity for saving more energy in dehydration processes.

10.
Nat Commun ; 14(1): 1735, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977714

RESUMEN

The ultrafast transport of adsorbates in confined spaces is a goal pursued by scientists. However, diffusion will be generally slower in nano-channels, as confined spaces inhibit motion. Here we show that the movement of long-chain molecules increase with a decrease in pore size, indicating that confined spaces promote transport. Inspired by a hyperloop running on a railway, we established a superfast pathway for molecules in zeolites with nano-channels. Rapid diffusion is achieved when the long-chain molecules keep moving linearly, as well as when they run along the center of the channel, while this phenomenon do not exist for short-chain molecules. This hyperloop-like diffusion is unique for long-chain molecules in a confined space and is further verified by diffusion experiments. These results offer special insights into molecule diffusion under confinement, providing a reference for the selection of efficient catalysts with rapid transport in the industrial field.

11.
J Phys Chem Lett ; 14(5): 1198-1207, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36715699

RESUMEN

Kinetic quantum sieving (KQS) based on pore size and chemical affinity quantum sieving (CAQS) based on adsorption site are two routes of porous materials to separate hydrogen isotope mixtures. Alkali earth metals (Be, Mg, and Ca) were doped into UiO-67 to explore whether these metal sites can promote H2/D2 separation. Based on the zero-point energy and adsorption enthalpy calculated by density functional theory calculations, the Be dopant shows better H2/D2 separation performance than other alkali earth metal dopants and unsaturated metal sites in metal-organic frameworks based on CAQS. Orbital interaction strongly relates to the chemical affinity and further influences the D2/H2 selectivity. Moreover, the predicted D2/H2 selectivity of Be-doped sites (49.4) at 77 K is even larger than the best experimental result (26). Finally, the different dynamic behaviors of H2 and D2 on Be-doped UiO-67 indicate its strong H2/D2 separation performance via KQS.

12.
Nat Commun ; 13(1): 7106, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402761

RESUMEN

By employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 - C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.

13.
Natl Sci Rev ; 9(9): nwac151, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36168443

RESUMEN

Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.

14.
J Phys Chem Lett ; 13(40): 9295-9302, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36173737

RESUMEN

Although defects are prevalent in metal-organic frameworks (MOFs) and usually play a crucial role in modulating their performance in various applications, detailed structural characterizations of various defects remain a challenging task mainly due to their disordered, heterogeneous, and local nature. In this work, by using solid-state nuclear magnetic resonance spectroscopy (SSNMR) techniques in conjunction with density functional theory (DFT) calculations, it is clearly elucidated that the trimethylphosphine (TMP)-assisted 31P NMR strategy is capable of greatly facilitating the qualitative and quantitative description of the detailed structural and acidic characteristics as well as the evolution process of various Zr defects with subtle distinctions in UiO-66 upon moderate thermal treatment, hence surpassing most conventional analytical techniques. These results offer a fundamental understanding of the defect chemistry in MOFs.

15.
Nat Commun ; 13(1): 5112, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042242

RESUMEN

The defects in metal-organic frameworks (MOFs) can dramatically alter their pore structure and chemical properties. However, it has been a great challenge to characterize the molecular structure of defects, especially when the defects are distributed irregularly in the lattice. In this work, we applied a characterization strategy based on solid-state nuclear magnetic resonance (NMR) to assess the chemistry of defects. This strategy takes advantage of the coordination-sensitive phosphorus probe molecules, e.g., trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO), that can distinguish the subtle differences in the acidity of defects. A variety of local chemical environments have been identified in defective and ideal MOF lattices. The geometric dimension of defects can also be evaluated by using the homologs of probe molecules with different sizes. In addition, our method provides a reliable way to quantify the density of defect sites, which comes together with the molecular details of local pore environments. The comprehensive solid-state NMR strategy can be of great value for a better understanding of MOF structures and for guiding the design of MOFs with desired catalytic or adsorption properties.

16.
J Am Chem Soc ; 144(31): 14269-14277, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914188

RESUMEN

Although the mass production of synthetic plastics has transformed human lives, it has resulted in waste accumulation on the earth. Here, we report a low-temperature conversion of polyethylene into olefins. By mixing the polyethylene feed with rationally designed ZSM-5 zeolite nanosheets at 280 °C in flowing hydrogen as a carrier gas, light hydrocarbons (C1-C7) were produced with a yield of up to 74.6%, where 83.9% of these products were C3-C6 olefins with almost undetectable coke formation. The reaction proceeds in multiple steps, including polyethylene melting, flowing to access the zeolite surface, cracking on the zeolite surface, formation of intermediates to diffuse into the zeolite micropores, and cracking into small molecules in the zeolite micropores. The ZSM-5 zeolite nanosheets kinetically matched the cascade cracking steps on the zeolite external surface and within micropores by boosting the intermediate diffusion. This feature efficiently suppressed the intermediate accumulation on the zeolite surface to minimize coke formation. In addition, we found that hydrogen participation in the cracking process could hinder the formation of polycyclic species within zeolite micropores, which also contributes to the rapid molecule diffusion. The coking-resistant polyethylene upcycling process at a low temperature not only overturns the general viewpoint for facile coke formation in the catalytic cracking over the zeolites but also demonstrates how the polyethylene-based plastics can be upcycled to valuable chemicals. In addition to the model polyethylene, the reaction system worked efficiently for the depolymerization of multiple practically used polyethylene-rich plastics, enabling an industrially and economically viable path for dealing with plastic wastes.


Asunto(s)
Coque , Zeolitas , Alquenos/química , Humanos , Hidrógeno , Plásticos , Polietileno , Zeolitas/química
17.
Nat Nanotechnol ; 17(7): 714-720, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817859

RESUMEN

Catalytic reactions are severely restricted by the strong adsorption of product molecules on the catalyst surface, where promoting desorption of the product and hindering its re-adsorption benefit the formation of free sites on the catalyst surface for continuous substrate conversion1,2. A solution to this issue is constructing a robust nanochannel for the rapid escape of products. We demonstrate here that MFI zeolite crystals with a short b-axis of 90-110 nm and a finely controllable microporous environment can effectively boost the Fischer-Tropsch synthesis to olefins by shipping the olefin molecules. The ferric carbide catalyst (Na-FeCx) physically mixed with a zeolite promoter exhibited a CO conversion of 82.5% with an olefin selectivity of 72.0% at the low temperature of 260 °C. By contrast, Na-FeCx alone without the zeolite promoter is poorly active under equivalent conditions, and shows the significantly improved olefin productivity achieved through the zeolite promoter. These results show that the well-designed zeolite, as a promising promoter, significantly boosts Fischer-Tropsch synthesis to olefins by accelerating escape of the product from the catalyst surface.


Asunto(s)
Zeolitas , Adsorción , Alquenos , Catálisis , Hierro , Zeolitas/química
18.
ACS Macro Lett ; 11(8): 999-1007, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35862865

RESUMEN

The development of porous solid adsorbents for selective adsorption and separation of SO2 has attracted much attention recently. Herein, we design porous organic polymers (POPs) decorated with pyridine ligands as building units (POP-Py) through a radical polymerization of the 2,5-divinylpyridine (v-Py) monomer. Due to its high BET surface area, nanoporosity, and excellent stability, the prepared POP-Py can be used for reversible adsorption and efficient separation of SO2. The POP-Py possesses a SO2 capacity of 10.8 mmol g-1 at 298 K and 1.0 bar, which can be well retained after 6 recycles, showing an excellent reversible adsorption capacity. The POP-Py also shows superior separation performance for SO2 from a ternary SO2/CO2/N2 mixture (0.17/15/84.83v%), giving a breakthrough time and a saturated SO2 capacity at 178 min g-1 and 0.4 mmol g-1. The retention time was well maintained even under high moisture conditions, confirming its superior water resistance. Furthermore, when other vinyl-functionalized organic ligand monomers (bipyridine, pyrimidine, and pyrazine) were employed for radical polymerization, all of the resultant porous organic ligand polymers (POP-BPy, POP-PyI, and POP-PyA) exhibited superior performance for reversible adsorption and efficient separation of SO2. The combined features of reversible adsorption, efficient separation, and water resistance are important for the industrial applications of these materials as SO2 adsorbents.


Asunto(s)
Polímeros , Agua , Adsorción , Ligandos , Porosidad
19.
Science ; 377(6604): 406-410, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862543

RESUMEN

In many reactions restricted by water, selective removal of water from the reaction system is critical and usually requires a membrane reactor. We found that a simple physical mixture of hydrophobic poly(divinylbenzene) with cobalt-manganese carbide could modulate a local environment of catalysts for rapidly shipping water product in syngas conversion. We were able to shift the water-sorption equilibrium on the catalyst surface, leading to a greater proportion of free surface that in turn raised the rate of syngas conversion by nearly a factor of 2. The carbon monoxide conversion reached 63.5%, and 71.4% of the hydrocarbon products were light olefins at 250°C, outperforming poly(divinylbenzene)-free catalyst under equivalent reaction conditions. The physically mixed CoMn carbide/poly(divinylbenzene) catalyst was durable in the continuous test for 120 hours.

20.
Chem Soc Rev ; 51(11): 4337-4385, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35536126

RESUMEN

Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...