Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 73, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956677

RESUMEN

Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.


Asunto(s)
Linaje , Humanos , Masculino , Femenino , Sordera/genética , Sordera/patología , Mutación/genética , Apoptosis/genética , Adulto , Pueblo Asiatico/genética , Persona de Mediana Edad , Secuenciación del Exoma , Genes Dominantes , Microtúbulos/genética , Microtúbulos/metabolismo , Pueblos del Este de Asia
2.
Hear Res ; 436: 108831, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393735

RESUMEN

Pediatric auditory neuropathy spectrum disorder is a particular type of hearing loss caused by abnormal sound transmission from the cochlea to the brain. It is due to defective peripheral synaptic function or improper neuronal conduction. Using trio whole-exome sequencing, we have identified novel biallelic variants in the PLEC gene in three individuals with profound deafness from two unrelated families. Among them, one pediatric patient diagnosed with auditory neuropathy spectrum disorder had a good cochlear implantation outcome. The other two adult patients were diagnosed with non-syndromic hearing loss. Studies in mice and zebrafish confirmed that plectin is developmentally expressed in the inner ear. Moreover, plectin's knockdown resulted in a reduction of synaptic mitochondrial potential and loss of ribbon synapses, reinforcing the idea of a role for plectin in neuronal transmission. Altogether, the results presented here, point to a new unconventional role for plectin in the inner ear. Contrary to the well-characterized association of plectin to skin and muscle diseases, we found that specific plectin mutations can result in hearing loss with no other clinical manifestations. This is important because 1) it provides evidence of plectin's involvement in inner ear function and 2) it will help clinicians at the time of diagnosis and treatment.


Asunto(s)
Sordera , Pérdida Auditiva , Ratones , Animales , Plectina/genética , Pez Cebra/genética , Pérdida Auditiva/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...