Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(1): 1010-1021, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223080

RESUMEN

Background: Pulmonary nodular consolidation (PN) and pulmonary cavity (PC) may represent the two most promising imaging signs in differentiating multidrug-resistant (MDR)-pulmonary tuberculosis (PTB) from drug-sensitive (DS)-PTB. However, there have been concerns that literature described radiological feature differences between DS-PTB and MDR-PTB were confounded by that MDR-PTB cases tend to have a longer history. This study seeks to further clarify this point. Methods: All cases were from the Guangzhou Chest Hospital, Guangzhou, China. We retrieved data of consecutive new MDR cases [n=46, inclusive of rifampicin-resistant (RR) cases] treated during the period of July 2020 and December 2021, and according to the electronic case archiving system records, the main PTB-related symptoms/signs history was ≤3 months till the first computed tomography (CT) scan in Guangzhou Chest Hospital was taken. To pair the MDR-PTB cases with assumed equal disease history length, we additionally retrieved data of 46 cases of DS-PTB patients. Twenty-two of the DS patients and 30 of the MDR patients were from rural communities. The first CT in Guangzhou Chest Hospital was analysed in this study. When the CT was taken, most cases had anti-TB drug treatment for less than 2 weeks, and none had been treated for more than 3 weeks. Results: Apparent CT signs associated with chronicity were noted in 10 cases in the DS group (10/46) and 9 cases in the MDR group (10/46). Thus, the overall disease history would have been longer than the assumed <3 months. Still, the history length difference between DS patients and MDR patients in the current study might not be substantial. The lung volume involvement was 11.3%±8.3% for DS cases and 8.4%±6.6% for MDR cases (P=0.022). There was no statistical difference between DS cases and MDR cases both in PN prevalence and in PC prevalence. For positive cases, MDR cases had more PN number (mean of positive cases: 2.63 vs. 2.28, P=0.38) and PC number (mean of positive cases: 2.14 vs. 1.38, P=0.001) than DS cases. Receiver operating characteristic curve analysis shows, PN ≥4 and PC ≥3 had a specificity of 86% (sensitivity 25%) and 93% (sensitivity 36%), respectively, in suggesting the patient being a MDR cases. Conclusions: A combination of PN and PC features allows statistical separation of DS and MDR cases.

2.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223121

RESUMEN

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

3.
Curr Med Sci ; 43(6): 1195-1200, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153629

RESUMEN

OBJECTIVE: This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3 (LOXL3) affects the autophagy in chondrocytes in osteoarthritis (OA), specifically through the activation of mammalian target of rapamycin complex 1 (mTORC1). METHODS: To establish an OA model, rats underwent anterior cruciate ligament transection (ACLT). Chondrocytes were isolated from cartilage tissues and cultured. Western blotting was performed to assess the expression of LOXL3, Rheb, phosphorylation of p70S6K (p-p70S6K, a downstream marker of mTORC1), and autophagy markers. The autophagy of chondrocytes was observed using an immunofluorescence assay. RESULTS: The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage, in comparison to those from the normal cartilage. The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K, as well as an increase in the expression of autophagy-related proteins. Additionally, the effect of LOXL3 could be reversed through the silencing of Rheb. The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy. CONCLUSION: LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.


Asunto(s)
Aminoácido Oxidorreductasas , Condrocitos , Osteoartritis , Animales , Ratas , Autofagia/genética , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Osteoartritis/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Aminoácido Oxidorreductasas/genética
4.
Nanoscale ; 14(31): 11369-11377, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35894834

RESUMEN

Two-dimensional (2D) materials with excellent properties are emerging as promising candidates in electronics and spintronics. In this work, a novel GaOCl monolayer is proposed and studied systematically based on first-principles calculations. With excellent thermal and dynamic stability at room temperature, its wide direct bandgap (4.46 eV) can be further modulated under applied strains. The 2D semiconductor exhibits high mechanical flexibility, and anisotropy in Poisson's ratio and carrier mobilities, endowing it with a broad spectrum of electronic and optoelectronic applications. More importantly, the GaOCl monolayer has spontaneous magnetization induced by hole doping and shows outstanding multidirectional piezoelectricity, which are comparable with those of either magnetic or piezoelectric 2D materials. Our calculations indicate that the GaOCl monolayer with wide bandgaps and tunable piezoelectricity and ferromagnetism could be promising for applications in multifunctional integrated nano-devices with high performance.

5.
Phys Chem Chem Phys ; 24(14): 8371-8377, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35332903

RESUMEN

InSeBr-Type monolayers, ternary In(Se,S)(Br,Cl) compounds, are typical two-dimensional (2D) Janus materials and can be exfoliated from their bulk crystals. The structural stability, electronic properties, mechanical flexibility, and intrinsic piezoelectricity of these InSeBr-type 2D Janus monolayers are comprehensively investigated by first-principles calculations. Our calculations show that the stable InSeBr-type monolayers exhibit ultrahigh mechanical flexibility with low Young's moduli. Due to the amazing flexibility of the InSeBr monolayer with an ultra-low Young's modulus of 0.81 N m-1, the piezoelectric strain coefficient d11 can reach 103 pm V-1 orders of magnitude (around 2361-3224 pm V-1), which is larger than those of reported 2D materials and even superior to those of conventional perovskite bulk materials. Such a superior piezoelectric response of InSeBr-type monolayers could facilitate their practical applications in sensors and energy harvesters.

6.
Phys Chem Chem Phys ; 23(5): 3637-3645, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33524094

RESUMEN

Due to their broken out-of-plane inversion symmetry, Janus two-dimensional (2D) materials exhibit some exceptional and interesting physical properties and have recently attracted increasing attention. Herein, based on first-principles calculations, we propose a series of Janus 2D titanium nitride halide TiNX0.5Y0.5 (X, Y = F, Cl, or Br, and X ≠ Y) monolayers constructed from 2D ternary compounds TiNX (X = F, Cl, or Br), where the halogen atoms X or Y are located on each side of the monolayer, respectively. Our calculations confirm that the Janus monolayers are both dynamically and thermally stable. As compared with those of perfect TiNX monolayers, the band-structure changes of Janus TiNX0.5Y0.5 monolayers are very limited and the corresponding bandgaps only increase by about 0.1-0.2 eV. Meanwhile, the Janus TiNX0.5Y0.5 monolayers show remarkable out-of-plane piezoelectricity by virtue of their broken centrosymmetry. The calculated out-of-plane piezoelectric coefficient d31 is as high as 0.34 pm V-1, which is larger than those of most 2D piezoelectric materials reported previously. In addition, it is found that the formation of Janus structures could effectively improve the carrier mobility. The hole mobilities along the x-direction (y-direction) of Janus TiNF0.5Cl0.5 and TiNF0.5Br0.5 monolayers reach as high as 5402 (5118) and 5538 (4135) cm2 V-1 s-1 at 300 K, respectively, which is almost twice as large as those of perfect TiNX monolayers. The giant out-of-plane piezoelectricity and high carrier mobility of Janus TiNX0.5Y0.5 monolayers suggest that these novel 2D materials could be promising for applications in electronic and piezoelectric devices.

7.
Phys Chem Chem Phys ; 22(46): 27441-27449, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33232408

RESUMEN

Low-dimensional materials have aroused widespread interest for their novel and fascinating properties. Based on first-principles calculations, we predict the one-dimensional (1D) InSeI nanochains with van der Waals (vdW) interchain interactions, which could be exfoliated mechanically and kept at steady states at room temperature. Compared with bulk InSeI, the single nanochain InSeI has a larger direct bandgap of 3.15 eV. Its calculated carrier mobility is as high as 54.17 and 27.49 cm2 V-1 s-1 for holes and electrons, respectively, comparable with those of other 1D materials. In addition, a direct-to-indirect bandgap transition is implemented under a small applied strain (∼6%). More importantly, the nanochains are found to be promising candidates for optoelectronic devices since they possess a high absorption coefficient of ∼105 cm-1 in the ultraviolet region. The results thus pave a novel avenue for the applications of InSeI nanochains with excellent thermal stability in nanoelectronic and optoelectronic devices.

8.
Nanoscale ; 12(10): 5888-5897, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32104822

RESUMEN

Recently, stable 2D wide-bandgap semiconductors with excellent electronic and photoelectronic properties have attracted much scientific and technological interest. In this study, we predict a novel InTeI monolayer which has a wide bandgap of 2.735 eV and a anisotropic electron mobility as high as 12 137.80 cm2 V-1 s-1 based on first-principles calculations. With an exfoliating energy lower than that of monolayer phosphorene, it is feasible to synthesize the 2D InTeI monolayer through mechanical exfoliation from their 3D bulk crystals. Remarkably, the monolayer InTeI achieves the indirect-to-direct bandgap transition under a small in-plane uniaxial strain, while a quasi-direct bandgap can be achieved in the InTeI nanosheets with elevated thickness. The InTeI monolayer and nanosheets have suitable band alignments in the visible-light excitation region. In addition, our theoretical simulations determine that 2D InTeI materials exhibit more excellent oxidation resistance than black phosphorene. The results not only identify a novel class of 2D wide-bandgap semiconductors but also demonstrate their potential applications in nanoelectronics and optoelectronics.

9.
Chem Commun (Camb) ; 56(5): 818-821, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31848531

RESUMEN

We designed an excellent-performance porous nitrogen-doped carbon material with a NiO/Cu/Cu2O hetero-interface derived from bimetal-organic frameworks. The hetero-interfaces between NiO/Cu/Cu2O could boost the Na+ diffusion and increase the electrical conductivity. The obtained composite achieves highly reversible Na-storage with excellent cycling stability and rate capability.

10.
RSC Adv ; 9(28): 15917-15925, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35521423

RESUMEN

In order to enhance and tune the electrocaloric effect (ECE) and ferroelectric responses, nanocomposites containing ferroelectric copolymer poly(vinylidene fluoride trifluoroethylene) and two-dimensional (2D) graphitic-C3N4 (g-C3N4) are synthesized. The effects of g-C3N4 on the ferroelectric-to-paraelectric phase transition of the copolymer are investigated by the differential scanning calorimetry (DSC), P-E hysteresis loop and dielectric spectrum measurements. The results indicate that the addition of 2D g-C3N4 in the ferroelectric copolymer is an effective approach in enhancing its dielectric and ferroelectric properties. Furthermore, the nanocomposites show the maximum absolute value of negative electrocaloric effect (ECE) of 5.4 K at 322 K under an electric field of 0.45 MV cm-1, which is much better than that of pristine copolymer. The negative ECE of the nanocomposites can be well explained by the Kauzmann theory. The low cost and enhanced negative ferroelectric properties of P(VDF-TrFE) make them more feasible over ceramics materials such as lead zirconate titanate (PZT) based ferroelectrics for applications in electrocaloric refrigeration.

11.
Phys Chem Chem Phys ; 20(28): 19177-19187, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29978165

RESUMEN

Looking for the high-performance alternatives to conventional lead-containing piezoelectric materials such as lead zirconate titanate (PZT) is absolutely vital for the development of low-dimensional innovative piezoelectric devices. Herein, we present our first-principles calculations on several new monolayers consisting of ternary In-containing sesquichalcogenides, which exhibit high stability and extraordinary piezoelectric properties. Our calculations predict that the in-plane (d11) and out-of-plane (d31) piezoelectric coefficients of BiInSe3, SbInSe3, BiInTe3, and SbInTe3 monolayers are much larger than those of most previously reported two-dimensional (2D) materials and widely studied wurtzite-type bulk piezoelectrics. Very strikingly, BiInTe3 monolayer possesses a d11 as high as 362 pm V-1 due to its mechanical flexibility, which is the highest among those reported in 2D materials and for the first time reaches those (∼360 pm V-1) in bulk lead-containing piezoelectric materials such as PZT. The theoretical predictions of the giant piezoelectricity in these 2D materials suggest that they have great potentials for the applications in atomically thin lead-free piezoelectric devices such as sensors and energy harvesters.

12.
J Alloys Compd ; 740: 1067-1076, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29628623

RESUMEN

Multiferroics have broad application prospects in various fields such as multi-layer ceramic capacitors and multifunctional devices owing to their high dielectric constants and coupled magnetic and ferroelectric properties at room temperature. In this study, cobalt ferrite (CFO)/barium calcium titanate (BCT) composite fibers are prepared from BCT and CFO sols by an electrospinning method, and are then oriented by magnetic fields and sintered at high temperatures. The effects of magnetic fields and CFO contents on the nanostructures and magnetoelectric properties of the composites are investigated. Strong coupling between magnetic and ferroelectric properties occurs in CFO/BCT composites with magnetic orientation. More interestingly, the dielectric constants of CFO/BCT composites with magnetic orientation are found to be enhanced (by ∼1.5-3.5 times) as compared with those of BCT and CFO/BCT without magnetic orientation. The boost of dielectric constants of magnetic-field orientated CFO/BCT is attributed to the magneto-electrical coupling between CFO and BCT, where the polar domains of BCT are pinned by the orientated CFO. Therefore, this work not only provides a novel and effective approach in enhancing the dielectric constants of ceramic ferroelectrics, which is of tremendous value for industrial applications, but also elucidates the interaction mechanisms between ferromagnetic phase and ferroelectric phase in multiferroic compounds.

13.
Phys Chem Chem Phys ; 19(40): 27508-27515, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28975948

RESUMEN

Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d11 of 54 pm V-1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d31 and d26 with values of -10 pm V-1 and 21 pm V-1, respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

14.
Polymers (Basel) ; 9(8)2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30970990

RESUMEN

Exceptionally high electro-caloric effects (ECEs) are observed in nanocomposites consisting of poly(vinylidene fluoride-co-trifluoroethylene) (VDF⁻co⁻TrFE) copolymer and barium titanate (BT) nanoparticles and nanowires. The poly(VDF⁻co⁻TrFE) matrix nanocomposites containing 5% volume fraction of BT nanowires are found to exhibit a negative ECE temperature change as large as 12 °C or a refrigeration effect of 8.3 J/g, which is much larger than those reported to date. The mechanisms of negative ECE and the enhanced negative ECE in the nanocomposites consisting of poly(VDF⁻co⁻TrFE) and BT nanowires are explained by the Kauzmann theory on glassy polar states and the interaction between BT nanofillers and the copolymer matrix. The effects of geometries of BT nanofillers on the negative ECEs are elucidated by P-E loop measurements, and dielectric and dynamical mechanical analyses. The nanocomposites, with their enhanced negative ECE tuned by the geometries of BT nanofillers, provide us with promising ECE refrigerants for practical application to small-sized and environmentally-friendly ECE coolers in the heat management of electronic devices.

15.
Photochem Photobiol Sci ; 15(8): 1012-9, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27417708

RESUMEN

A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles.

16.
Micromachines (Basel) ; 7(7)2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30404290

RESUMEN

Graphene aerogels (GAs) are functionalized with Fe-Co-P alloy using an electro-deposition method. The Fe-Co-P alloy coated on the graphene nanosheets is found to possess an amorphous structure and a nanoporous architecture of GAs. The electro-mechanical properties of GAs are significantly affected by the Fe-Co-P nanoparticles embedded inside GAs. The electro-mechanical responses of GA/Fe-Co-P nanoporous hybrid structures are sensitive to an applied magnetic field, demonstrating that they are promising for electro-magneto-mechanical applications. The light-weight, high-strength and nanoporous GAs functionalized with Fe-Co-P amorphous alloys are desirable sensors, actuators, and nano-electro-mechanical systems that could be controlled or manipulated by mechanical, electric and magnetic fields.

17.
J Laparoendosc Adv Surg Tech A ; 23(3): 246-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23379918

RESUMEN

UNLABELLED: Abstract Background: In laparoscopic surgery with CO2 pneumoperitoneum, serious complications often occur for elderly patients and those who undergo long operations. These complications mainly include respiratory and circulatory system changes. In patients with tumors, release of free tumor cells into the abdominal cavity is believed to be possible. Gasless laparoscopic techniques can avoid these complications of CO2 pneumoperitoneum. Currently, the main shortcoming of gasless laparoscopic techniques is inadequate operative space. Because of this shortcoming, gasless techniques have not been widely applied in clinical practice. MATERIALS AND METHODS: We herein describe a new technique of gasless laparoscopic cholecystectomy in pigs using a self-designed umbrella-like abdominal wall-lifting device. This device lifts up the anterior abdominal wall by opening the umbrella leaf in the abdominal cavity. RESULTS: Five pigs underwent laparoscopic cholecystectomy using this technique. The operation times were 85, 40, 28, 21, and 24 minutes. The corresponding bleeding volumes were 11, 20, 5, 2, and 8 mL. CONCLUSIONS: These preliminary outcomes suggest that the umbrella-like abdominal wall-lifting technique is safe and feasible in gasless laparoscopic surgery and can provide sufficient exposure of the operative field. Further study in the form of randomized controlled trials is needed to investigate the advantages of this new technique.


Asunto(s)
Laparoscopía/instrumentación , Laparoscopía/métodos , Pared Abdominal , Animales , Diseño de Equipo , Masculino , Porcinos , Porcinos Enanos
18.
Int J Mol Sci ; 13(8): 10401-10409, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22949869

RESUMEN

Density functional theory has been employed to investigate the deformation behaviors of glassy Fe-Si-B model systems prepared by ab initio molecular dynamics. The atomistic deformation defects which are closely related to the local dilation volumes or excess volumes and unstable bonding have been systematically analyzed. It has been found that the icosahedral structures are relatively stable under shear deformation until fracture occurs. Plastic flow is indicated by interruption of percolating icosahedral structures, caused by unstable Fe-Si bonding of p-s hybridization in nature.


Asunto(s)
Boro/química , Vidrio/química , Hierro/química , Teoría Cuántica , Silicio/química , Modelos Moleculares , Simulación de Dinámica Molecular
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 2A): 036108, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12366185

RESUMEN

Dynamic scaling for driven disordered systems is investigated in some disordered Ising models. Using Monte Carlo simulation, we find that avalanches in both random-field and random-bond Ising models follow dynamic power-law scaling in short times, and the scaling relations are universal for the systems studied. The probability distribution of the dynamic scaling exponent theta is found to have two peaks centered at theta(1) and theta(2). The short-time dynamic exponent theta(1) is invariant and universal for all avalanches while the exponent theta(2) depends on the strength of disorder. The analytical result for the early stage evolution of breakdown process in the random-field Ising model is obtained using mean-field approximation. Short-time dynamic scaling is also confirmed.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2A): 036130, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11909188

RESUMEN

Critical short-time dynamics in a bond-diluted Ising model is investigated in this paper using numerical simulations. The effective static and dynamic critical exponents determined by the power-law scaling are found to depend strongly on bond concentration and initial state. For weak disorder, the short-time scaling relations for the system quenched from high temperature are observed to hold. In the strong dilution limit, multiscaling relations for the system starting from the ordered state are found. Corrections to the short-time scaling are proposed. The effect of disorder on critical short-time dynamics is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...