Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518488

RESUMEN

The substantial release of NH3 during composting leads to nitrogen (N) losses and poses environmental hazards. Additives can mitigate nitrogen loss by adsorbing NH3/NH4, adjusting pH, and enhancing nitrification, thereby improving compost quality. Herein, we assessed the effects of combining bacterial inoculants (BI) (1.5%) with tricalcium phosphate (CA) (2.5%) on N retention, organic N conversion, bacterial biomass, functional genes, network patterns, and enzyme activity during kitchen waste (KW) composting. Results revealed that adding of 1.5%/2.5% (BI + CA) significantly (p < 0.05) improved ecological parameters, including pH (7.82), electrical conductivity (3.49 mS/cm), and N retention during composting. The bacterial network properties of CA (265 node) and BI + CA (341 node) exhibited a substantial niche overlap compared to CK (210 node). Additionally, treatments increased organic N and total N (TN) content while reducing NH4+-N by 65.42% (CA) and 77.56% (BI + CA) compared to the control (33%). The treatments, particularly BI + CA, significantly (p < 0.05) increased amino acid N, hydrolyzable unknown N (HUN), and amide N, while amino sugar N decreased due to bacterial consumption. Network analysis revealed that the combination expanded the core bacterial nodes and edges involved in organic N transformation. Key genes facilitating nitrogen mediation included nitrate reductase (nasC and nirA), nitrogenase (nifK and nifD), and hydroxylamine oxidase (hao). The structural equation model suggested that combined application (CA) and microbial inoculants enhance enzyme activity and bacterial interactions during composting, thereby improving nitrogen conversion and increasing the nutrient content of compost products.


Asunto(s)
Inoculantes Agrícolas , Fosfatos de Calcio , Compostaje , Suelo/química , Estiércol , Bacterias/genética , Nitrógeno/análisis
2.
Sci Total Environ ; 891: 164672, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290655

RESUMEN

In winter, snowpack is an important driver of soil bacterial processes. Amending soil through the addition of organic compost has also been reported to affect soil properties and bacterial communities. However, the effects of snow and organic compost on soils have not been systematically researched and compared. To investigate the effects of these two activities on the succession of bacterial communities in the soil and on important soil nutrients, four treatment groups were established in this study: no snow without compost (CK-N), no snow with compost (T1-N), snow without compost (CK-X) and snow with compost (T1-X). Four representative time periods were also selected according to the extent of snow accumulation, including the first snow and melt. In addition, the compost pile was treated with fertilizer made from decomposing food waste. The results indicate that Proteobacteria was more affected by temperature and that fertilization increased its proportional abundance. The abundance of Acidobacteriota was increased by snow. Ralstonia could depend on nutrients provided by organic fertilizers, which prevented them from ceasing to breed at low temperatures, while snow cover was still able to reduce their survival. However, snowpack increased the abundance of RB41. Snow reduced the point and connectivity of the bacterial community and increased the association with environmental factors, especially the negative correlation with total nitrogen (TN); the prefertilizer application made the community network larger while maintaining association with environmental factors. Specifically, more key nodes in sparse communities after snow cover were identified by Zi-Pi analysis. The present study systematically assessed soil bacterial community succession in the context of snow cover and fertilizer application and interpreted the farm environment from a microscopic perspective through the winter. We found that snowpack affects TN through bacterial community succession. This study offers new insight into soil management.


Asunto(s)
Eliminación de Residuos , Suelo , Alimentos , Fertilizantes/microbiología , Agricultura , Bacterias , Microbiología del Suelo
3.
Bioresour Technol ; 362: 127823, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029985

RESUMEN

The main objective of this research was to investigate the effects of Phosphorus-Solubilizing Bacterial (PSB) inoculant on the bacterial structure and phosphorus transformation during kitchen waste composting. High throughput sequencing, topological roles, and multiple analysis methods were conducted to explain the links between phosphorus fractions, enzyme contents, and microbial community structure and function. The findings indicated that bacterial inoculant improved environmental parameters and increased the concentration of total phosphorus, Olsen phosphorus, citric acid phosphorus, OM decomposition, and bacterial diversity. Network analysis concluded that the inoculation treatment was more complex (nodes and edges) and contained more positive links than the control, implying the inoculation effect. The structural equation model also displayed that pH and enzyme activity directly enhanced the phosphorus conversion and bacterial structure. Overall, these results suggest that bacterial inoculation may considerably increase enzyme activity, thus improving biological phosphorus transformation and nutrient content in composting products.


Asunto(s)
Inoculantes Agrícolas , Compostaje , Microbiota , Bacterias , Fósforo , Suelo/química
4.
Waste Manag ; 150: 257-266, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870361

RESUMEN

Microbes are the drivers for disposing of organic solid waste (OSW) during aerobic fermentation. Notwithstanding, the significance of microbes is underestimated in numerous studies on aerobic fermentation product assessments. Here, we investigated the humification degree (HD), and the humic acid content was assessed in terms of the bacterial community. The bacterial communities were useful indicators for making predictions and even correctly determined the categories of OSWs with 94% accuracy. The bacterial codes can also provide a better prediction of HD. Our results demonstrate that the bacteria code is a reliable biological method to assess HD effectively. Bacterial codes can be used as ecological and biological indicators to evaluate the quality of aerobic fermentation of different materials.


Asunto(s)
Compostaje , Bacterias , Sustancias Húmicas/análisis , Estiércol , Suelo , Residuos Sólidos
5.
Chemosphere ; 286(Pt 1): 131635, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34346339

RESUMEN

Composting is a biodegradation and transformation process that converts lignocellulosic biomass into value-added products, such as humic substances (HSs). However, the recalcitrant nature of lignocellulose hinders the utilization of cellulose and hemicellulose, decreasing the bioconversion efficiency of lignocellulose. Pretreatment is an essential step to disrupt the structure of lignocellulosic biomass. Many pretreatment methods for composting may cause microbial inactivation and death. Thus, the pretreatment methods suitable for composting can promote the degradation and transformation of lignocellulosic biomass. Therefore, this review summarizes the pretreatment methods suitable for composting. Microbial consortium pretreatment, Fenton pretreatment and surfactant-assisted pretreatment for composting may improve the bioconversion process. Microbial consortium pretreatment is a cost-effective pretreatment method to enhance HSs yields during composting. On the other hand, the efficiency of enzyme production during composting is very important for the degradation of lignocellulose, whose action mechanism is unknown. Therefore, this review describes the mechanism of action of lignocellulase, the predominant microbes producing lignocellulase and their related genes. Finally, optimizing pretreatment conditions and increasing enzymatic hydrolysis to improve the quality of composts by controlling suitable microenvironmental factors and core target microbial activities as a research focus in the bioconversion of lignocellulose during composting in the future.


Asunto(s)
Compostaje , Biomasa , Celulosa , Lignina
6.
Bioresour Technol ; 340: 125639, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34315126

RESUMEN

This study was aimed at exploring the mechanism of promoting humus formation by the addition of exogenous amino acids. Amino acids not only participated in the synthesis of humus directly as precursors, but also changed the functions of bacterial communities. The composition and diversity of bacterial community changed with the addition of amino acids. The ability of bacterial community to degrade lignocellulose was enhanced, which provided precursors for humus synthesis. The key bacteria for humus formation and organic matter transformation were identified using random forests. These bacteria showed growth advantage with the addition of amino acids. The results showed that exogenous amino acids tended to transform organic matter and synthesize humus. Variance partitioning analysis confirmed that the bacterial community was the driving force of humus synthesis. These results were further verified by the structural equation model. These findings provided new ideas and understanding for straw waste composting.


Asunto(s)
Compostaje , Aminoácidos , Biomasa , Sustancias Húmicas/análisis , Lignina , Suelo
7.
Bioresour Technol ; 337: 125403, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34147772

RESUMEN

The aims of this study were to identify the driving factors of humic acid (HA) during rice straw composting based on Fenton pretreatment with bacterial inoculation. Rice straw was pretreated by Fenton reactions and then inoculated during composting, which was set up CK (control), FeW (Fenton pretreatment) and FeWI (Fenton pretreatment + functional bacterial agents). Results indicated that Fenton pretreatment and inoculation of functional bacteria increased the concentration of HA components, which was due to that bacterial composition was changed and bacterial diversity was decreased. Moreover, Fenton pretreatment and inoculation of functional bacteria increased the bacterial amounts of shikimic acid metabolism genes and the correlation between HA components and shikimic acid metabolism genes. Therefore, the functional bacteria were core driving factors, and NH4--N, pH, cellulose and bacterial diversity as key environmental factors to promote the formation of HA components.


Asunto(s)
Compostaje , Oryza , Celulosa , Sustancias Húmicas/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...