Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pediatr ; 11: 1172111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664548

RESUMEN

Introduction: The emergence of the Omicron variant has seen changes in the clinical and radiological presentations of COVID-19 in pediatric patients. We sought to compare these features between patients infected in the early phase of the pandemic and those during the Omicron outbreak. Methods: A retrospective study was conducted on 68 pediatric COVID-19 patients, of which 31 were infected with the original SARS-CoV-2 strain (original group) and 37 with the Omicron variant (Omicron group). Clinical symptoms and chest CT scans were examined to assess clinical characteristics, and the extent and severity of lung involvement. Results: Pediatric COVID-19 patients predominantly had normal or mild chest CT findings. The Omicron group demonstrated a significantly reduced CT severity score than the original group. Ground-glass opacities were the prevalent radiological findings in both sets. The Omicron group presented with fewer symptoms, had milder clinical manifestations, and recovered faster than the original group. Discussion: The clinical and radiological characteristics of pediatric COVID-19 patients have evolved with the advent of the Omicron variant. For children displaying severe symptoms warranting CT examinations, it is crucial to weigh the implications of ionizing radiation and employ customized scanning protocols and protective measures. This research offers insights into the shifting disease spectrum, aiding in the effective diagnosis and treatment of pediatric COVID-19 patients.

2.
Front Mol Biosci ; 8: 648180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124146

RESUMEN

Purpose: By analyzing the CT manifestations and evolution of COVID in non-epidemic areas of southeast China, analyzing the developmental abnormalities and accompanying signs in the early and late stages of the disease, providing imaging evidence for clinical diagnosis and identification, and assisting in judging disease progression and monitoring prognosis. Methods: This retrospective and multicenter study included 1,648 chest CT examinations from 693 patients with laboratory-confirmed COVID-19 infection from 16 hospitals of southeast China between January 19 and March 27, 2020. Six trained radiologists analyzed and recorded the distribution and location of the lesions in the CT images of these patients. The accompanying signs include crazy-paving sign, bronchial wall thickening, microvascular thickening, bronchogram sign, fibrous lesions, halo and reverse-halo signs, nodules, atelectasis, and pleural effusion, and at the same time, they analyze the evolution of the abovementioned manifestations over time. Result: There were 1,500 positive findings in 1,648 CT examinations of 693 patients; the average age of the patients was 46 years, including 13 children; the proportion of women was 49%. Early CT manifestations are single or multiple nodular, patchy, or flaky ground-glass-like density shadows. The frequency of occurrence of ground-glass shadows (47.27%), fibrous lesions (42.60%), and microvascular thickening (40.60%) was significantly higher than that of other signs. Ground-glass shadows increase and expand 3-7 days after the onset of symptoms. The distribution and location of lesions were not significantly related to the appearance time. Ground-glass shadow is the most common lesion, with an average absorption time of 6.2 days, followed by consolidation, with an absorption time of about 6.3 days. It takes about 8 days for pure ground-glass lesions to absorb. Consolidation change into ground glass or pure ground glass takes 10-14 days. For ground-glass opacity to evolve into pure ground-glass lesions, it takes an average of 17 days. For ground-glass lesions to evolve into consolidation, it takes 7 days, pure ground-glass lesions need 8 days to evolve into ground-glass lesions. The average time for CT signs to improve is 10-15 days, and the first to improve is the crazy-paving sign and nodules; while the progression of the disease is 6-12 days, the earliest signs of progression are air bronchogram signs, bronchial wall thickening, and bronchiectasis. There is no severe patient in this study. Conclusion: This study depicts the CT manifestation and evolution of COVID in non-epidemic origin areas, and provides valuable first-hand information for clinical diagnosis and judgment of patient's disease evolution and prediction.

3.
Sci Rep ; 11(1): 5148, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664342

RESUMEN

This study aimed to clarify and provide clinical evidence for which computed tomography (CT) assessment method can more appropriately reflect lung lesion burden of the COVID-19 pneumonia. A total of 244 COVID-19 patients were recruited from three local hospitals. All the patients were assigned to mild, common and severe types. Semi-quantitative assessment methods, e.g., lobar-, segmental-based CT scores and opacity-weighted score, and quantitative assessment method, i.e., lesion volume quantification, were applied to quantify the lung lesions. All four assessment methods had high inter-rater agreements. At the group level, the lesion load in severe type patients was consistently observed to be significantly higher than that in common type in the applications of four assessment methods (all the p < 0.001). In discriminating severe from common patients at the individual level, results for lobe-based, segment-based and opacity-weighted assessments had high true positives while the quantitative lesion volume had high true negatives. In conclusion, both semi-quantitative and quantitative methods have excellent repeatability in measuring inflammatory lesions, and can well distinguish between common type and severe type patients. Lobe-based CT score is fast, readily clinically available, and has a high sensitivity in identifying severe type patients. It is suggested to be a prioritized method for assessing the burden of lung lesions in COVID-19 patients.


Asunto(s)
COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Factores de Edad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
5.
Ann Transl Med ; 8(15): 935, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32953735

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has widely spread worldwide and caused a pandemic. Chest CT has been found to play an important role in the diagnosis and management of COVID-19. However, quantitatively assessing temporal changes of COVID-19 pneumonia over time using CT has still not been fully elucidated. The purpose of this study was to perform a longitudinal study to quantitatively assess temporal changes of COVID-19 pneumonia. METHODS: This retrospective and multi-center study included patients with laboratory-confirmed COVID-19 infection from 16 hospitals between January 19 and March 27, 2020. Mass was used as an approach to quantitatively measure dynamic changes of pulmonary involvement in patients with COVID-19. Artificial intelligence (AI) was employed as image segmentation and analysis tool for calculating the mass of pulmonary involvement. RESULTS: A total of 581 confirmed patients with 1,309 chest CT examinations were included in this study. The median age was 46 years (IQR, 35-55; range, 4-87 years), and 311 (53.5%) patients were male. The mass of pulmonary involvement peaked on day 10 after the onset of initial symptoms. Furthermore, the mass of pulmonary involvement of older patients (>45 years) was significantly severer (P<0.001) and peaked later (day 11 vs. day 8) than that of younger patients (≤45 years). In addition, there were no significant differences in the peak time (day 10 vs. day 10) and median mass (P=0.679) of pulmonary involvement between male and female. CONCLUSIONS: Pulmonary involvement peaked on day 10 after the onset of initial symptoms in patients with COVID-19. Further, pulmonary involvement of older patients was severer and peaked later than that of younger patients. These findings suggest that AI-based quantitative mass evaluation of COVID-19 pneumonia hold great potential for monitoring the disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...