Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiol Plus ; 8(4): 227-246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304487

RESUMEN

The history of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) reflects the relentless pursuit of innovation in interventional cardiology. These intravascular imaging technologies have played a pivotal role in our understanding of coronary atherosclerosis, vascular pathology, and the interaction of coronary stents with the vessel wall. Two decades of clinical investigations demonstrating the clinical efficacy and safety of intravascular imaging modalities have established these technologies as staples in the contemporary cardiac catheterization lab's toolbox and earning their place in revascularization clinical practice guidelines. In this comprehensive review, we will delve into the historical evolution, mechanisms, and technical aspects of IVUS and OCT. We will discuss the expanding evidence supporting their use in complex percutaneous coronary interventions, emphasizing their crucial roles in optimizing patient outcomes and ensuring procedural success. Furthermore, we will explore the substantial advances that have propelled these imaging modalities to the forefront of contemporary interventional cardiology. Finally, we will survey the latest developments in the field and explore the promising future directions that have the potential to further revolutionize coronary interventions.

2.
Plant Sci ; 325: 111495, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240912

RESUMEN

Grain weight is an important characteristic of grain shape and a key contributing factor to the grain yield in rice. Here, we report that gw2.1, a new allele of the Grain Width and Weight 2 (GW2) gene, regulates grain size and grain weight. A single nucleotide substitution in the coding sequence (CDS) of gw2.1 resulted in the change of glutamate to lysine (E128K) in GW2.1 protein. Complementation tests and GW2 overexpression experiments demonstrated that the missense mutation in gw2.1 was responsible for the phenotype of enlarged grain size in the mutant line jf42. The large grain trait of the near-isogenic line NIL-gw2.1 was found to result from increased cell proliferation during flower development. Meanwhile, NIL-gw2.1 was shown to increase grain yield without compromising the grain quality. The GW2 protein was localized to the cell nucleus and membrane, and interacted with CHB705, a subunit of the chromatin remodeling complex. Finally, the F1 hybrids from crosses of NIL-gw2.1 with 7 cytoplasmic male-sterile lines exhibited large grains and desirable grain appearance. Thus, gw2.1 is a promising allele that could be applied to improve grain yield and grain appearance in rice. AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analyzed in the study are available from the corresponding author on reasonable request.


Asunto(s)
Oryza , Oryza/genética , Alelos , Sitios de Carácter Cuantitativo , Grano Comestible/metabolismo , Fenotipo
3.
Planta ; 256(2): 27, 2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35780402

RESUMEN

MAIN CONCLUSION: The zqdm1 identified from a rice mutant is a novel allele of BRD2 and is responsible for regulating rice plant height, grain size and appearance, which has possibilities on improving rice quality. Plant height is an important agronomic trait related to rice yield, and grain size directly determines grain yield in rice (Oryza sativa L.). With the development of molecular biotechnology and genome sequencing technology, more and more key genes associated with plant height and grain size have been cloned and identified in recent years. This study identified the zqdm1 gene from a mutant with reduced plant height and grain size. The zqdm1 gene was revealed to be a new allele of BRASSINOSTEROID DEFICIENT DWARF 2 (BRD2), encoding a FAD-linked oxidoreductase protein involved in the brassinosteroid (BR) biosynthesis pathway, and regulates plant height by reducing cell number of longitudinal sections of the internode and regulates grain size by altering cell expansion. A 369-bp DNA fragment was found inserted at the first exon, resulting in protein-coding termination. This mutation has not been discovered in previous studies. Complementation tests have confirmed that 369-bp insertion in BRD2 was responsible for the plant height and grain size changing in the zqdm1 mutant. Over-expression of BRD2 driven by different promoters into indica rice variety Jiafuzhan (JFZ) results in slender grains, suggesting its function on regulating grain shape. In summary, the current study has identified a new BRD2 allele, which facilitated the further research on the molecular mechanism of this gene on regulating growth and development.


Asunto(s)
Oryza , Alelos , Brasinoesteroides/metabolismo , Mapeo Cromosómico , Grano Comestible , Oryza/metabolismo
4.
Plant J ; 110(5): 1397-1414, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322500

RESUMEN

La proteins are found widely in eukaryotes and play a variety of vital roles. AtLa1 has been identified as an La protein that is necessary for embryogenesis in Arabidopsis; however, the existence and biological functions of La proteins in rice (Oryza sativa L.) remain unclear. In this study, we identified and characterized two La proteins in rice that are homologous to AtLa1 and named them OsLa1 and OsLa2. Both the OsLa1 and OsLa2 genes encode RNA-binding proteins with an La domain and two RNA-binding domains. Mutant OsLa1 reduced grain length and pollen fertility, whereas OsLa1 overexpression caused the opposite phenotypes. Further experiments indicated that OsLa1 modulates grain size by influencing cell expansion. Interestingly, mutant OsLa2 resulted in thin grains with decreased weight and a low seed-setting rate. We also found that OsLa1 interacted with OsLa2 and that both OsLa1 and OsLa2 interacted with OseIF6.1, a eukaryotic translation initiation factor involved in ribosome biogenesis. In addition, OsLa1 was able to bind to OseIF6.1 mRNA to modulate its expression. Complete OseIF6.1 knockout caused lethality and OseIF6.1/oseif6.1 heterozygous plants displayed low fertility and low seed setting. Together, our results enrich our knowledge of the role of La proteins in rice growth and development, as well as the relationship between La and eIF6 in rice.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Semillas/metabolismo
5.
EClinicalMedicine ; 40: 101115, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34522872

RESUMEN

BACKGROUND: We investigate whether deep learning (DL) neural networks can reduce erroneous human "judgment calls" on bedside echocardiograms and help distinguish Takotsubo syndrome (TTS) from anterior wall ST segment elevation myocardial infarction (STEMI). METHODS: We developed a single-channel (DCNN[2D SCI]), a multi-channel (DCNN[2D MCI]), and a 3-dimensional (DCNN[2D+t]) deep convolution neural network, and a recurrent neural network (RNN) based on 17,280 still-frame images and 540 videos from 2-dimensional echocardiograms in 10 years (1 January 2008 to 1 January 2018) retrospective cohort in University of Iowa (UI) and eight other medical centers. Echocardiograms from 450 UI patients were randomly divided into training and testing sets for internal training, testing, and model construction. Echocardiograms of 90 patients from the other medical centers were used for external validation to evaluate the model generalizability. A total of 49 board-certified human readers performed human-side classification on the same echocardiography dataset to compare the diagnostic performance and help data visualization. FINDINGS: The DCNN (2D SCI), DCNN (2D MCI), DCNN(2D+t), and RNN models established based on UI dataset for TTS versus STEMI prediction showed mean diagnostic accuracy 73%, 75%, 80%, and 75% respectively, and mean diagnostic accuracy of 74%, 74%, 77%, and 73%, respectively, on the external validation. DCNN(2D+t) (area under the curve [AUC] 0·787 vs. 0·699, P = 0·015) and RNN models (AUC 0·774 vs. 0·699, P = 0·033) outperformed human readers in differentiating TTS and STEMI by reducing human erroneous judgement calls on TTS. INTERPRETATION: Spatio-temporal hybrid DL neural networks reduce erroneous human "judgement calls" in distinguishing TTS from anterior wall STEMI based on bedside echocardiographic videos. FUNDING: University of Iowa Obermann Center for Advanced Studies Interdisciplinary Research Grant, and Institute for Clinical and Translational Science Grant. National Institutes of Health Award (1R01EB025018-01).

6.
Front Plant Sci ; 12: 814928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126437

RESUMEN

Chalkiness is one of several major restricting factors for the improvement of rice quality. Although many chalkiness-related quantitative trait loci have been mapped, only a small number of genes have been cloned to date. In this study, the candidate gene GSE5 of a major quantitative trait locus (QTL) for rice chalkiness, qDEC5, was identified by map-based cloning. Phenotyping and haplotype analysis of proActin:GSE5 transgenic line, gse5-cr mutant, and 69 rice varieties further confirmed that GSE5 had the pleiotropic effects and regulated both chalkiness and grain shape. Genetic analysis showed GSE5 was a dominant gene for grain length and a semi-dominant gene for grain width and chalkiness. The DNA interval closely linked to GSE5 was introgressed to Zhenshan 97B (ZB) based on molecular marker-assisted selection, and the improved ZB showed lower chalkiness and longer but smaller grains, which showed that GSE5 played an important role in breeding rice varieties with high yield and good quality. Transcriptomics, proteomics, and qRT-PCR analyses showed that thirty-nine genes associated with carbon and protein metabolism are regulated by GSE5 to affect the formation of chalkiness, including some newly discovered genes, such as OsCESA9, OsHSP70, OsTPS8, OsPFK04, OsSTA1, OsERdj3A, etc. The low-chalkiness lines showed higher amino sugar and nucleotide sugar metabolism at 10 days after pollination (DAP), lower carbohydrate metabolism at 15 DAP, and lower protein metabolism at 10 and 15 DAP. With heat shock at 34/30°C, rice chalkiness increased significantly; OsDjC10 and OsSUS3 were upregulated at 6 and 12 DAP, respectively, and OsGSTL2 was downregulated at 12 DAP. Our results identified the function and pleiotropic effects of qDEC5 dissected its genetic characteristics and the expression profiles of the genes affecting the chalkiness formation, and provided a theoretical basis and application value to harmoniously pursue high yield and good quality in rice production.

7.
Rice (N Y) ; 12(1): 52, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31321562

RESUMEN

BACKGROUND: Breeding for genes controlling key agronomic traits is an important goal of rice genetic improvement. To gain insight into genes controlling grain morphology, we screened M3 plants derived from 1,000 whole-genome sequenced (WGS) M2 Kitaake mutants to identify lines with altered grain size. RESULTS: In this study, we isolated a mutant, named fast-neutron (FN) 60-4, which exhibits a significant reduction in grain size. We crossed FN60-4 with the parental line Kitaake and analyzed the resulting backcross population. Segregation analysis of 113 lines from the BC2F2 population revealed that the mutant phenotype is controlled by a single semi-dominant locus. Mutant FN60-4 is reduced 20% in plant height and 8.8% in 1000-grain weight compared with Kitaake. FN60-4 also exhibits an 8% reduction in cell number and a 9% reduction in cell length along the vertical axis of the glume. We carried out whole-genome sequencing of DNA pools extracted from segregants with long grains or short grains, and revealed that one gene, LOC_Os09g02650, cosegregated with the grain size phenotype in the BC1F2 and BC2F2 populations. This mutant allele was named grain shape 9-1 (gs9-1). gs9-1 carries a 3-bp deletion that affects two amino acids. This locus is a new allele of the BC12/GDD1/MTD1 gene that encodes a kinesin-like protein involved in cell-cycle progression, cellulose microfibril deposition and gibberellic acid (GA) biosynthesis. The GA biosynthesis-related gene KO2 is down-regulated in gs9-1. The dwarf phenotype of gs9-1 can be rescued by adding exogenous GA3. In contrast to the phenotypes for the other alleles, the gs9-1 is less severe, consistent with the nature of the mutation, which does not disrupt the open reading frame as observed for the other alleles. CONCLUSIONS: In this study, we isolated a mutant, which exhibits altered grain shape and identified the mutated gene, gs9-1. Our study reveals that gs9-1 is a semi-dominant gene that carries a two-amino acid mutation. gs9-1 is allelic to the BC12/GDD1/MTD1 gene involved in GA biosynthesis. These results demonstrate the efficiency and convenience of cloning genes from the whole-genome sequenced Kitaake mutant population to advance investigations into genes controlling key agronomic traits in rice.

8.
J Exp Bot ; 70(15): 3851-3866, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020332

RESUMEN

Grain shape is controlled by quantitative trait loci (QTLs) in rice (Oryza sativa L.). A rice mutant (JF178) with long and large grains has been used in a breeding program for over a decade, but its genetic basis has been unclear. Here, a semi-dominant QTL, designated Large Grain Size 1 (LGS1), was cloned and the potential molecular mechanism of LGS1 function was studied. Near-isogenic lines (NILs) and a map-based approach were employed to clone the LGS1 locus. LGS1 encodes the OsGRF4 transcription factor and contains a 2 bp missense mutation in the coding region that coincides with the putative pairing site of miRNA396. The LGS1 transcript levels in the mutant line were found to be higher than the lgs1 transcript levels in the control plants, suggesting that the mutation might disrupt the pairing of the LGS1 mRNA with miR396. In addition to producing larger grains, LGS1 also enhanced cold tolerance at the seedling stage and increased the survival rate of seedlings after cold stress treatment. These findings indicate that the mutation in LGS1 appears to disturb the GRF4-miR396 stress response network and results in the development of enlarged grains and enhancement of cold tolerance in rice.


Asunto(s)
Mutación Missense/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Análisis de Secuencia de ARN
9.
J Neurosurg ; 131(3): 828-838, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30497181

RESUMEN

OBJECTIVE: The trigeminal root entry zone (TREZ) is a transitional zone between the central nervous system (CNS) and peripheral nervous system (PNS), adjacent to the brainstem. Microvascular compression of the TREZ has been considered to be the primary etiology in most cases of trigeminal neuralgia (TN), but whether epigenetic regulation is involved in the pathogenesis of TN is still unclear. Therefore, this study was designed to investigate the epigenetic regulation of histone H3 acetylation in the TREZ in an animal model of TN. METHODS: An animal model of TN was established, and adult male Sprague-Dawley rats were randomly assigned to a TN group with trigeminal nerve root compression, sham operation group, TN+HDACi group (TN plus selective histone deacetylase inhibitor injection into the TREZ), or TN+Veh group (TN plus vehicle injection into the TREZ). To measure the length of the central portion of the TREZ from the junction of the trigeminal nerve root entering the pons to the interface of the dome-shaped CNS-PNS transitional zone, immunofluorescent staining of glia and glial nuclei was performed using glial fibrillary acidic protein (GFAP) antibody and DAPI, respectively. To investigate the acetylation of histone H3 within the TREZ in a TN animal model group and a sham operation group, localization of histone H3K9, H3K18, and H3K27 acetylation was examined via immunohistochemical staining methods. RESULTS: Measurements of the CNS-PNS transitional zone in the TREZ revealed that the average length from the junction of the trigeminal nerve root connecting the pons to the glial fringe of the TREZ in the TN group was longer than that in the sham operation group (p < 0.05) and that the interface gradually migrated distally. Cells that stained positive for acetylated histone H3K9, H3K18, and H3K27 were distributed around both sides of the border of the CNS-PNS junction in the TREZ. The ratio of immunoreactive H3K9-, H3K18- and H3K27-positive cells in the TN group was obviously higher than that in the sham operation group on postoperative days 7, 14, 21, and 28 (p < 0.05). CONCLUSIONS: These results suggested that chronic compression of the trigeminal nerve root may be involved in the pathogenesis of TN in an animal model by influencing the plasticity of the CNS-PNS transitional zone and the level of histone acetylation in the TREZ.


Asunto(s)
Histonas/metabolismo , Neuralgia del Trigémino/metabolismo , Acetilación , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Neuralgia del Trigémino/etiología , Neuralgia del Trigémino/patología
10.
J Thorac Dis ; 10(3): 2034-2045, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29707360

RESUMEN

Cardiac amyloidosis is thought to be a rare group of diseases caused by extracellular deposition of misfolded proteins in the extracellular cardiac matrix resulting in heart failure with preserved ejection fraction (HFpEF). This review focuses on the similarities and differences between the pathophysiology, clinical presentation and diagnostic tests of wild-type transthyretin cardiac amyloidosis (ATTRwt-CA) compared to immunoglobulin light chain amyloidosis and hereditary cardiac amyloidosis. We address some obstacles to timely diagnosis and opportunities for management of the clinical symptoms as well as possibility of future novel disease modifying therapies.

11.
Plant Cell Rep ; 35(12): 2423-2433, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27623811

RESUMEN

Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.


Asunto(s)
Oryza/anatomía & histología , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Transducción de Señal , Fenómenos Biomecánicos , Modelos Biológicos
12.
Can J Cardiol ; 30(10): 1250.e5-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25174858

RESUMEN

A patient with Turner syndrome presented with shortness of breath with exertion. Three-dimensional transesophageal echocardiogram revealed a bicuspid aortic valve with severe aortic stenosis. There were multiple masses attached to the aortic valve and tricuspid valve, which mimicked vegetations. The patient underwent aortic and tricuspid valve replacement. Histology revealed papillary fibroelastomas of the aortic and tricuspid valves. To our knowledge, this is the first report of papillary fibroelastomas involving the left- and the right-sided valves in a patient with Turner syndrome.


Asunto(s)
Válvula Aórtica , Neoplasias Cardíacas/complicaciones , Enfermedades de las Válvulas Cardíacas/complicaciones , Válvula Tricúspide , Síndrome de Turner/complicaciones , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Ecocardiografía Transesofágica , Femenino , Fibroma , Neoplasias Cardíacas/diagnóstico por imagen , Neoplasias Cardíacas/patología , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/patología , Humanos , Persona de Mediana Edad , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/patología
14.
PLoS One ; 9(4): e93947, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699514

RESUMEN

Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Oryza/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
15.
Cardiovasc Revasc Med ; 15(3): 165-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24216001

RESUMEN

We report a case of a Perforated Sinus of Valsalva Aneurysm (PSOV) closure using an Amplatzer muscular ventricular septal defect occluder (mVSD) device and describe a novel and potentially safer way for defect sizing. A literature review of the endovascular treatment of this disease is presented.


Asunto(s)
Rotura de la Aorta/terapia , Procedimientos Endovasculares/instrumentación , Dispositivo Oclusor Septal , Seno Aórtico , Adulto , Rotura de la Aorta/diagnóstico , Ecocardiografía Doppler en Color , Ecocardiografía Transesofágica , Humanos , Masculino , Diseño de Prótesis , Seno Aórtico/diagnóstico por imagen , Resultado del Tratamiento
16.
Trends Plant Sci ; 18(4): 218-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23218902

RESUMEN

Rice (Oryza sativa) grain shape is a key determinant of grain yield and market values. Facilitated by advancements in genomics and various molecular markers, more than 400 quantitative trait loci (QTLs) associated with rice grain traits have been identified. In this review, we examine the genetic bases of rice grain shape, focusing on the protein products of 13 genes that have been cloned and the chromosome locations of 15 QTLs that have been fine mapped. Although more genes affecting grain traits are likely to be cloned in the near future, characterizing their functions at the biochemical level and applying these molecular data to rice breeding programs will be a more challenging task.


Asunto(s)
Grano Comestible/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Biomasa , Mapeo Cromosómico , Grano Comestible/anatomía & histología , Grano Comestible/crecimiento & desarrollo , Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...