Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404135, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884284

RESUMEN

Lightweight and semi-transparent organic solar cells (ST-OSCs) offer bright promise for applications such as building integrated photovoltaics. Diluting donor content in bulk-heterojunction active layers to allow greater visible light transmittance (AVT) effectively enhances device transparency, yet the ineluctable compromise of the donor-phase continuity is challenging for efficient charge transport. Herein, a trace amount of n-type N-DMBI dopant is incorporated, which facilitates the donor:acceptor (D:A) de-mixing by strengthening both acceptor polarity and D/A crystallization. With the diminution of component inter-mixing, the limited number of donors increasingly self-aggregate to establish the more continuous phases. For the benchmark PM6:Y6-based ST-OSCs, when the donor content is reduced from regular 45 to optimal 30 wt.%, the device AVT is remarkably raised by more than a quarter, accompanied by a marginal drop in power conversion efficiency from 13.89% to 13.03%. This study reveals that by decreasing the donor content to <30 wt%, acceptor excitons induced by Förster resonance energy transfer are prone to severe radiative recombination. This is nonetheless mitigated by dopant inclusion within the acceptor phase by providing extra energy offset and prolonging charge transfer state lifetime to assist exciton dissociation.

2.
ACS Appl Mater Interfaces ; 16(17): 22361-22368, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628106

RESUMEN

Spin-coated quasi-two-dimensional halide perovskite films, which exhibit superior optoelectronic properties and environmental stability, have recently been extensively studied for lasers. Crystallinity is of great importance for the laser performance. Although some parameters related to the spin-coating process have been studied, the in-depth understanding and effective control of the acceleration rate on two-dimensional perovskite crystallization during spin-coating are still unknown. Here we investigate the effect of solvent evaporation on the microstructure of the final perovskite films during the spin-coating process. The crystallization quality of the film can be significantly improved by controlling solvent evaporation. As a result, the prepared quasi-2D perovskite film exhibits a stimulated emission threshold (pump: 343 nm, 6 kHz, 290 fs) of 550 nm as low as 16.2 µJ/cm2. Transient absorption characterization shows that the radiative biexciton recombination time is reduced from 738.5 to 438.3 ps, benefiting from the improved crystallinity. The faster biexciton recombination significantly enhanced the photoluminescence efficiency, which is critical for population inversion. This work could contribute to the development of low-threshold lasers.

3.
Nano Lett ; 24(17): 5238-5245, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629707

RESUMEN

ZnTe colloidal semiconductor nanocrystals (NCs) have shown promise for light-emitting diodes (LEDs) and displays, because they are free from toxic heavy metals (Cd). However, so far, their low photoluminescence (PL) efficiency (∼30%) has hindered their applications. Herein, we devised a novel structure of ZnTe NCs with the configuration of ZnSe (core)/ZnTe (spherical quantum well, SQW)/ZnSe (shell). The inner layer ZnTe was grown at the surface of ZnSe core with avoiding using highly active and high-risk Zn sources. Due to the formation of coherently strained heterostructure which reduced the lattice mismatch, and the thermodynamic growth of ZnTe, the surface or interface defects were suppressed. A high PL efficiency of >60% was obtained for the green light-emitting ZnSe/ZnTe/ZnSe SQWs after ZnS outer layer passivation, which is the highest value for colloidal ZnTe-based NCs. This work paves the way for the development of novel semiconductor NCs for luminescent and display applications.

4.
J Phys Chem Lett ; 15(13): 3627-3638, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38530393

RESUMEN

Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.

5.
J Phys Chem Lett ; 14(34): 7665-7671, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37603899

RESUMEN

Low dimensional perovskite-inspired materials with self-tapped exciton (STE) emission have stimulated a surge of cutting-edge research in optoelectronics. Despite numerous efforts on developing versatile low-dimensional perovskite-inspired materials with efficient STE emissions, there is little emphasis on the intrinsic dynamics of STE-based broad emission in these materials. Here, we investigated the excited state dynamics in zero-dimensional (0D) Cs2ZrCl6 nanocrystals (NCs) with efficient blue STE emission. By using femtosecond transient absorption (fs-TA) spectroscopy, the ultrafast STE formation process within 400 fs is directly observed. Then, the formed STEs relax to an intermediate STE state with a lifetime of ∼180 ps before reaching the emissive STE state with a lifetime of ∼15 µs. Our work offers a comprehensive and precise dynamic picture of STE emission in low-dimensional metal halides and sheds light on extending their potential applications.

6.
Adv Sci (Weinh) ; 10(21): e2206880, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196414

RESUMEN

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

7.
Adv Mater ; 35(20): e2211591, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36918401

RESUMEN

Reducing the excitation threshold to minimize the Joule heating is critical for the realization of perovskite laser diodes. Although bound excitons are promising for low threshold laser, how to generate them at room temperature for laser applications is still unclear in quasi-2D perovskite-based devices. In this work, via engineering quasi-2D perovskite PEA2 (CH3 NH3 )n -1 Pbn Br3 n +1 microscopic grains by the anti-solvent method, room-temperature multiexciton radiative recombination is successfully demonstrated at a remarkably low pump density of 0.97 µJ cm-2 , which is only one-fourth of that required in 2D CdSe nanosheets. In addition, the well-defined translational momentum in quasi-2D perovskite grains can restrict the Auger recombination which is detrimental to radiative emission. Furthermore, the quasi-2D perovskite grains are favorable for increasing binding energies of excitons and biexcitons and so as the related radiative recombination. Consequently, the prepared phase quasi-2D perovskite film renders a threshold of room-temperature stimulated emission as low as 13.7 µJ cm-2 , reduced by 58.6% relative to the amorphous counterpart with larger grains. The findings in this work are expected to facilitate the development of solution-processable perovskite multiexcitonic laser diodes.

8.
Chemistry ; 29(26): e202203772, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36746746

RESUMEN

Although remarkable progresses are achieved in the design and development of the mono-shift in photoluminescence for mechanofluorochromic materials, it is still a severe challenge to explore the opposite mechanofluorochromic materials with both blue- and red-shifted photoluminescence. Herein, two unprecedented 4,5-bis(TPE)-1H-imidazole fused pyridine or quinoline-based fluorophores X-1 and X-2 were designed and synthesized, and X-1 and X-2, exhibit completely opposite mechanofluorochromic behavior. Under UV lamp, the color of pristine X-1 changed from blue to green with reversible redshifted 27 nm in fluorescence emission spectra after ground, while the color of pristine X-2 changed from red to yellow with reversible blue-shifted 74 nm after ground. The detailed characterizations (including PXRD, SEM and DSC) confirmed that this opposite mechanofluorochromism was attributed to the transformation of order-crystalline and amorphous states. The crystal structure analysis and theoretical calculation further explain that opposite mechanofluorochromic behavior take into account different π-π stacking mode by induced π-extended systems. In addition, these TPE-based fluorophores (X-1 and X-2) exhibited excellent bio-compatibility and fluorescence properties for bio-imaging, writable data storage and anti-counterfeiting materials.

9.
J Phys Chem Lett ; 14(4): 1066-1072, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36696665

RESUMEN

Over the past two decades, intensive research efforts have been devoted to suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for the application of photovoltaics and light emitting devices (LEDs). Here, we have explored dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body interactions that are manifested under high excitation flux density in both NCs using ultrafast spectroscopic pump-probe measurements. We demonstrate that the Auger recombination rate due to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate excitation density, the majority of carriers recombine through biexcitonic recombination. However, at high excitation density (>1018 cm-3) a higher number of many-body Auger process dominates over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics and LEDs.

10.
ACS Omega ; 7(44): 39970-39974, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385807

RESUMEN

Methylammonium (MA) lead halide perovskites have been widely studied as active materials for advanced optoelectronics. As crystalline semiconductor materials, their properties are strongly affected by their crystal structure. Depending on their applications, the size of MA lead halide perovskite crystals varies by several orders of magnitude. The particle size can lead to different structural phase transitions and optoelectronic properties. Herein, we investigate the size effect for phase transition of MA lead bromide (MAPbBr3) by comparing the temperature-dependent neutron powder diffraction patterns of microcrystals and nanocrystals. The orthorhombic-to-tetragonal phase transition occurs in MAPbBr3 microcrystals within the temperature range from 100 to 310 K. However, the phase transition is absent in nanocrystals in this temperature range. In this work, we offer a persuasive and direct evidence of the relationship between the particle size and the phase transition in perovskite crystals.

11.
Angew Chem Int Ed Engl ; 61(51): e202210975, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36271496

RESUMEN

Triplet exciton-based long-lived phosphorescence is severely limited by the thermal quenching at high temperature. Herein, we propose a novel strategy based on the energy transfer from triplet self-trapped excitons to Mn2+ dopants in solution-processed perovskite CsCdCl3 . It is found the Mn2+ doped hexagonal phase CsCdCl3 could simultaneously exhibit high emission efficiency (81.5 %) and long afterglow duration time (150 s). Besides, the afterglow emission exhibits anti-thermal quenching from 300 to 400 K. In-depth charge-carrier dynamics studies and density functional theory (DFT) calculation provide unambiguous evidence that carrier detrapping from trap states (mainly induced by Cl vacancy) to localized emission centers ([MnCl6 ]4- ) is responsible for the afterglow emission with anti-thermal quenching. Enlightened by the present results, we demonstrate the application of the developed materials for optical storage and logic operation applications.

12.
J Chem Phys ; 157(1): 014201, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803814

RESUMEN

Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here, we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the QD size dependence of the LO-phonon frequency was identified.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Compuestos de Cadmio/química , Puntos Cuánticos/química , Compuestos de Selenio/química , Análisis Espectral , Temperatura
13.
J Phys Chem Lett ; : 5143-5150, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658092

RESUMEN

Polymerized small molecular acceptor (PSMA) based all-polymer solar cells (all-PSC) have achieved power conversion efficiencies (PCE) over 16%, and the PSMA is considered to hold great promise for further improving the performance of all-PSC. Yet, in comparison with that of the polymer donor, the photophysics of a polymerized acceptor remains poorly understood. Herein, the excited state dynamics in a polymerized acceptor PZT810 was comprehensively investigated under various pump intensities and photon energies. The excess excitation energy was found to play a key role in excitons dissociation into free polarons for neat PSMA films, while free polarons cannot be generated from the polaron pairs in neat acceptor films. This work reveals an in-depth understanding of relaxation dynamics for PSMAs and that the underlying photophysical origin of PSMA can be mediated by excitation energies and intensities. These results would benefit the realization of the working mechanism for all-PSC and the designing of new PSMAs.

14.
Chemistry ; 28(53): e202201372, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35773183

RESUMEN

N,O-bidentate BF2 complexes with five- and six-membered core rings have been thoroughly investigated. However, the development of seven-membered N,O-boron complexes is still an area to be explored. We have developed BF3 ⋅ OEt2 -induced self-condensation and coordination reactions based on a single starting material, which had been elucidated by experiment and calculation. This parent asymmetric core-expanded borondifluoride-(Z)-1,3-di(1H-pyrrol-2-yl)but-2-en-1-one (BOPYO) showed reactivity with a wide range of aldehydes, thus providing a series of conjugation BOPYOs. Moreover, a BOPYO derivative with a dimethylamino group was developed as a new NIR dye that responds to acid with favorable photophysical properties based on intramolecular charge transfer effect.

15.
J Phys Chem Lett ; 13(22): 4897-4904, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35622447

RESUMEN

The linear and nonlinear optical parameters and morphologic dependence of CsPbBr3 nanocrystals (NCs) are crucial for device engineering. In particular, such information in asymmetric nanocrystals is still insufficient. We characterized the OPLA (σ1) and TPA cross sections (σ2) of a series CsPbBr3 nanocrystals with various aspect ratios (AR) using femtosecond transient absorption spectroscopy (TAS). The σ1 presents a linear volume dependence of all the samples, which agrees with the previous behavior in CsPbBr3 QDs. However, the σ2 values do not exhibit conventional power dependency of the crystal volume but are also modulated by the shape-dependent local field factors. In addition, the local field effect in CsPbBr3 NCs is contributed by their asymmetric morphologies and polar ionic lattices, which is more pronounced than in conventional semiconductor NCs. Finally, we revealed that the lifetimes of photogenerated multiexcitonic species of those nanocrystals feature identical morphology independence in both OPLA and TPA.

16.
Chem Sci ; 13(6): 1734-1745, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35282633

RESUMEN

Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)-acoustic phonon bandgap, (2) enhances the electron-LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier-phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron-LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping.

17.
J Am Chem Soc ; 144(12): 5335-5341, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302742

RESUMEN

Metal halide perovskites have emerged as promising materials for optoelectronic applications in the last decade. A large amount of effort has been made to investigate the interplay between the crystalline lattice and photoexcited charge carriers as it is vital to their optoelectronic performance. Among them, ultrafast laser spectroscopy has been intensively utilized to explore the charge carrier dynamics of perovskites, from which the local structural information can only be extracted indirectly. Here, we have applied a time-resolved X-ray diffraction technique to investigate the structural dynamics of prototypical two-dimensional lead-free halide perovskite Cs3Bi2Br9 nanoparticles across temporal scales from 80 ps to microseconds. We observed a quick recoverable (a few ns) photoinduced microstrain up to 0.15% and a long existing lattice expansion (∼a few hundred nanoseconds) at mild laser fluence. Once the laser flux exceeds 1.4 mJ/cm2, the microstrain saturates and the crystalline phase partially transfers into a disordered phase. This photoinduced transient structural change can recover within the nanosecond time scale. These results indicate that photoexcitation of charge carriers couples with lattice distortion, which fundamentally affects the dielectric environment and charge carrier transport.

18.
Nat Commun ; 13(1): 845, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149679

RESUMEN

Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide.

19.
J Phys Chem Lett ; 13(5): 1266-1271, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089715

RESUMEN

Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120738, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34954481

RESUMEN

HClO/ClO-, as one of important reactive oxygen species, is a highly reactive unavoidable by-product generated from normal cell metabolism. In recent years, efficient method for detectiing HClO/ClO- is of great important to research its pathological or physiological function in bio-systems. In this work, we have constructed a fluorescent probe (P-Hc) with ratiometric signal for sensing HClO/ClO- in aqueous solution, physiological saline and different serums based on 2-(benzo[d]thiazol-2-yl)phenol dye. The structure of P-Hc was characterized by NMR and HRMS spectrum. The sensing mechanism has also been verified by 1H NMR spectrum. The P-Hc displays good sensitivity and selectivity for HClO/ClO- with a limit of detection (LOD) of 2.03 × 10-6 M. Furthermore, P-Hc has been applied for sensing HClO/ClO- in physiological saline and different serums. Thus, P-Hc may provide a novel method for ratiometric fluorescent sensing HClO/ClO- in bio-samples.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Límite de Detección , Albúmina Sérica Bovina , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...