Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microorganisms ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674619

RESUMEN

Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.

2.
Front Microbiol ; 15: 1258208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476934

RESUMEN

Synsepalum dulcificum exhibits high edible and medicinal value; however, there have been no reports on the exploration of its endophyte resources. Here, we conducted analyses encompassing plant metabolomics, microbial diversity, and the biological activities of endophytic metabolites in S. dulcificum. High-throughput sequencing identified 4,913 endophytic fungal amplicon sequence variants (ASVs) and 1,703 endophytic bacterial ASVs from the roots, stems, leaves, flowers, and fruits of S. dulcificum. Fungi were classified into 5 phyla, 24 classes, 75 orders, 170 families, and 313 genera, while bacteria belonged to 21 phyla, 47 classes, 93 orders, 145 families, and 232 genera. Furthermore, there were significant differences in the composition and content of metabolites in different tissues of S. dulcificum. Spearman's correlation analysis of the differential metabolites and endophytes revealed that the community composition of the endophytes correlated with plant-rich metabolites. The internal transcribed spacer sequences of 105 isolates were determined, and phylogenetic analyses revealed that these fungi were distributed into three phyla (Ascomycota, Basidiomycota, and Mucoromycota) and 20 genera. Moreover, 16S rDNA sequencing of 46 bacteria revealed they were distributed in 16 genera in three phyla: Actinobacteria, Proteobacteria, and Firmicutes. The antimicrobial activities (filter paper method) and antioxidant activity (DPPH and ABTS assays) of crude extracts obtained from 68 fungal and 20 bacterial strains cultured in different media were evaluated. Additionally, the α-glucosidase inhibitory activity of the fungal extracts was examined. The results showed that 88.6% of the strains exhibited antimicrobial activity, 55.7% exhibited antioxidant activity, and 85% of the fungi exhibited α-glucosidase inhibitory activity. The research suggested that the endophytes of S. dulcificum are highly diverse and have the potential to produce bioactive metabolites, providing abundant species resources for developing antibiotics, antioxidants and hypoglycemic drugs.

3.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064514

RESUMEN

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cilios , Demencia Frontotemporal , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cilios/metabolismo , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Células HEK293
4.
Chin J Nat Med ; 21(11): 868-880, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38035942

RESUMEN

From the fungus Trichoderma sp., we isolated seven novel 18-residue peptaibols, neoatroviridins E-K (1-7), and six new 14-residue peptaibols, harzianins NPDG J-O (8-13). Additionally, four previously characterized 18-residue peptaibols neoatroviridins A-D (14-17) were also identified. The structural configurations of the newly identified peptaibols (1-13) were determined by comprehensive nuclear magnetic resonance (NMR) and high-resolution electrospray ionization tandem mass spectrometry (HR-ESI-MS/MS) data. Their absolute configurations were further determined using Marfey's method. Notably, compounds 12 and 13 represent the first 14-residue peptaibols containing an acidic amino acid residue. In antimicrobial assessments, all 18-residue peptaibols (1-7, 14-17) exhibited moderate inhibitory activities against Staphylococcus aureus 209P, with minimum inhibitory concentration (MIC) values ranging from 8-32 µg·mL-1. Moreover, compound 9 exhibited moderate inhibitory effect on Candida albicans FIM709, with a MIC value of 16 µg·mL-1.


Asunto(s)
Antiinfecciosos , Trichoderma , Peptaiboles/farmacología , Peptaiboles/química , Trichoderma/química , Trichoderma/metabolismo , Espectrometría de Masas en Tándem/métodos , Antiinfecciosos/farmacología , Espectrometría de Masa por Ionización de Electrospray/métodos
5.
Aquat Toxicol ; 264: 106725, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806023

RESUMEN

The widespread presence of micro/nanoplastics in aquatic ecosystems has certainly affected ecosystem functions and food chains/webs. The impact is worsened by the accumulation of different pollutants and microorganisms on the surface of microplastics. At the tissue, cellular, and molecular levels, micro/nanoplastics and the contaminants they carry can cause damage to aquatic organisms. Problematically, the toxic mechanism of micro/nanoplastics and contaminants on aquatic organisms is still not fully understood. Algae are key organisms in the aquatic ecosystem, serving as primary producers. The investigation of the toxic effects and mechanisms of micro/nanoparticles and pollutants on algae can contribute to understanding the impact on the aquatic ecosystem. Micro/nanoplastics inhibit algal growth, reduce chlorophyll and photosynthesis, induce ultrastructural changes, and affect gene expression in algae. The effects of energy flow can alter the productivity of aquatic organisms. The type, particle size, and concentration of micro/nanoparticles can influence their toxic effects on algae. Although there has been some research on the toxic effects of algae, the limited information has led to a significant lack of understanding of the underlying mechanisms. This paper provides a comprehensive review of the interactions between micro/nanoplastics, pollutants, and algae. The effects of various factors on algal toxicity are also analyzed. In addition, this article discusses the combined effects of microplastics, global warming, and oil pollution on algae and aquatic ecosystems in the context of global change. This research is of great importance for predicting future environmental changes. This review offers a more comprehensive understanding of the interactions between microplastics/nanoplastics and algae, as well as their impact on the carbon cycle.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Ecosistema , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Ambientales/farmacología , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos
6.
Mol Biomed ; 4(1): 33, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840106

RESUMEN

Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.

7.
Sci Total Environ ; 881: 163467, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062323

RESUMEN

Effluent from sewage treatment plant, as an important source of microplastics (MPs) in receiving water, has attracted extensive attention. Membrane separation process shows good microplastic removal performance in the existing tertiary water treatment process. Problematically, membrane fouling and insufficient removal of small organic molecules are still the key obstacles to its further extensive application. Dissolved organics, extracellular polymers and suspended particles in the influent are deposited on the membrane surface and internal structure, reducing the number and pore diameter of effective membrane aperture, and increasing the resistance of membrane filtration. Exploring the mechanism and approach of membrane fouling caused by micro/nanoplastics is the key to alleviate fouling and allow membranes to operate longer. In this paper, removal performance of micro/nanoplastics by current membrane filtration and the contribution to membrane fouling during water treatment are thoroughly reviewed. The coupling mechanisms between micro/nanoplastics and other pollutants and mechanism of membrane fouling caused by composite micro/nanoplastics are discussed. Additionally, on this basis, the prospect of combined process for micro/nanoplastic removal and membrane fouling prevention is also proposed and discussed, which provides a valuable reference for the preferential removal of micro/nanoplastics and development of antifouling membrane.

8.
Proteomics ; 23(15): e2200301, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37069743

RESUMEN

Over the past decade, the majority of the mammalian genome considered to be noncoding has been revealed to be able to produce proteins. Many RNA molecules, mis-annotated as noncoding, actually are predicted to code for proteins. Some of those proteins have been identified and verified to play critical roles in multiple biological processes. The lipid droplet (LD) is a unique cellular organelle bound with a phospholipid monolayer membrane, and is closely associated with cellular lipid metabolism and metabolic disorders. However, it is still unclear how a protein targets to LDs. Here we identified a new protein on LDs, LDANP2, which is encoded by noncoding RNA, through a proteomics-based strategy. The key sequence for its localization on LDs, Truncation 3, is predicted to form an amphipathic helix. Surprisingly, the deletion of the first amino acid in Truncation 3 resulted in mitochondrial localization. How the types of amino acids would determine the LD or mitochondrial localizations of the protein was studied. The findings introduce a useful strategy to mine for new proteins and would provide clues to the understanding of how a protein would find its right organelle, with phospholipid monolayer or bilayer membrane.


Asunto(s)
Aminoácidos , Gotas Lipídicas , Animales , Gotas Lipídicas/metabolismo , Aminoácidos/análisis , Proteínas/metabolismo , Fosfolípidos/metabolismo , Metabolismo de los Lípidos , Mitocondrias/genética , Mitocondrias/metabolismo , Mamíferos/metabolismo
9.
Geriatr Nurs ; 51: 167-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36990042

RESUMEN

Probiotic supplements were shown to improve cognitive function in Alzheimer's disease (AD) patients. However, it is still unclear whether this applies to older individuals with mild cognitive impairment (MCI). We aimed to explore the effects of probiotic supplementation on multiple neural behaviors in older adults with MCI. Forty-two MCI patients (age > 60 years) were randomly divided into two groups and consumed either probiotics (n=21) or placebo (n=21) for 12 weeks. Various scale scores, gut microbiota measures and serological indicators were recorded pre- and posttreatment. After 12 weeks of intervention, cognitive function and sleep quality were improved in the probiotic group compared with those in the control group, and the underlying mechanisms were associated with changes in the intestinal microbiota. In conclusion, our study demonstrated that probiotic treatment enhanced cognitive function and sleep quality in older MCI patients, thus providing important insights into the clinical prevention and treatment of MCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Probióticos , Humanos , Anciano , Disfunción Cognitiva/terapia , Cognición , Enfermedad de Alzheimer/terapia , Probióticos/uso terapéutico , Probióticos/farmacología , Suplementos Dietéticos
10.
J Environ Manage ; 334: 117529, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801693

RESUMEN

Massive production and spread application of plastics have led to the accumulation of numerous plastics in the global environment so that the proportion of carbon storage in these polymers also increases. Carbon cycle is of fundamental significance to global climate change and human survival and development. With the continuous increase of microplastics, undoubtedly, there carbons will continue to be introduced into the global carbon cycle. In this paper, the impact of microplastics on microorganisms involved in carbon transformation is reviewed. Micro/nanoplastics affect carbon conversion and carbon cycle by interfering with biological fixation of CO2, microbial structure and community, functional enzymes activity, the expression of related genes, and the change of local environment. Micro/nanoplastic abundance, concentration and size could significantly lead to difference in carbon conversion. In addition, plastic pollution can further affect the blue carbon ecosystem reduce its ability to store CO2 and marine carbon fixation capacity. Nevertheless, problematically, limited information is seriously insufficient in understanding the relevant mechanisms. Accordingly, it is required to further explore the effect of micro/nanoplastics and derived organic carbon on carbon cycle under multiple impacts. Under the influence of global change, migration and transformation of these carbon substances may cause new ecological and environmental problems. Additionally, the relationship between plastic pollution and blue carbon ecosystem and global climate change should be timely established. This work provides a better perspective for the follow-up study of the impact of micro/nanoplastics on carbon cycle.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Ecosistema , Carbono , Dióxido de Carbono , Estudios de Seguimiento , Ciclo del Carbono , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 310: 136865, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36244422

RESUMEN

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Asunto(s)
Alcaloides , Fertilizantes , Humanos , Fertilizantes/análisis , Suelo , Aceite de Ricino , Flujo de Trabajo , Cromatografía Liquida , Alcaloides/análisis , Espectrometría de Masas , Agua/análisis
12.
Toxics ; 10(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35736924

RESUMEN

As an eco-friendly and efficient adsorbent for removal of potential toxic metals from aqueous solution, biochar has received widespread attention. In the present study, wheat straw biochar (BC) and corresponding modified biochar (HNC) were used to remove Cu2+, Cd2+ and Pb2+ from an aqueous solution. The influence of the environment factors on metals adsorption and adsorption mechanism were discussed in detail. The results showed that the HNC had porous structures and owned ample functional groups (-OH, -COOH and C-N groups) compared with the BC. In the single system, the adsorption capacities of HNC for Cu2+, Cd2+ and Pb2+ at a pH of 5.5 were 18.36, 22.83 and 49.38 mg/g, which were 76.89%, 164.36% and 22.75% higher than that of the BC, respectively. In addition, the adsorption process of Cu2+ and Cd2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-second-order kinetics, but the adsorption of Pb2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-first-order kinetics. Adsorption isotherms indicated that the adsorption of Cu2+, Cd2+ and Pb2+ by BC and HNC was a spontaneous endothermic process. The competitive adsorption of mixed metal ions (Cu2+, Cd2+ and Pb2+) revealed that HNC was more preferential to adsorb Cu2+ compared with Cd2+ and Pb2+. Furthermore, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the main adsorption mechanisms were surface complexation and precipitation, and the adsorbed Cu2+, Cd2+ and Pb2+ on HNC mainly exist as CuO, Cd(OH)2, Pb3O4 and Pb(OH)2.

13.
Mar Pollut Bull ; 179: 113729, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35537309

RESUMEN

Seventy-four surface sediment samples were collected from the Arctic Ocean and Bering Sea to determine the content of metal(loid)s (As, Cu, Cd, Ni, Pb, Zn and Cr). Metal(loid)s content in these sediments varied from 2.36-41.90 mg/kg for As, 8.63-82.28 mg/kg for Cu, 0.14-0.71 mg/kg for Cd, 11.86-100.60 mg/kg for Ni, 8.30-27.58 mg/kg for Pb, 39.93-391.43 mg/kg for Zn, and 40.96-106.49 mg/kg for Cr. The pH and water-soluble organic carbon content had considerable impacts on the content of metal(loid)s in sediment, but the texture of sediment has limited influence on metal(loid)s content in sediment. In addition, the hotspots of most of these metal(loid)s appeared in the Beaufort Sea region. The geoaccumulation index (Igeo) indicated that Cd was the metal with the highest contamination in these sediments, with 55.41% of the sample sites posing moderate pollution. The ecological risk for As, Cu, Ni, Pb, Zn and Cr indicates low ecological risk (100%), while Cd posed moderate risk (35.14%), considerable risk (54.05%) and high risk (10.81%) and attributed more than 76.45% of the total potential ecological risk of these metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , China , Monitoreo del Ambiente , Sedimentos Geológicos/química , Plomo , Metales Pesados/análisis , Océanos y Mares , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
14.
Chem Commun (Camb) ; 58(47): 6753-6756, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35609267

RESUMEN

A polymer nanocomposite film decorated with highly dispersive nanoparticles was prepared by a liquid-liquid interface induced self-assembly method based on a breath figure process. The distribution as well as the orientation preference of the Janus particles within the polymer matrix could be dynamically controlled by adjusting the environmental conditions. Antibacterial and photocatalytic functionality was obtained for the nanocomposite films decorated with silver and titanium dioxide nanoparticles, respectively.


Asunto(s)
Nanocompuestos , Nanopartículas , Antibacterianos/farmacología , Polímeros , Plata/farmacología
15.
Huan Jing Ke Xue ; 43(2): 995-1003, 2022 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-35075873

RESUMEN

The vegetable greenhouse soils in Yanglou Town, Ruzhou City, Henan Province were taken as the research object in the present study to explore the difference in soil physical and chemical properties and the total and fraction of heavy metals of different planting years. The potential ecological risks of heavy metals in greenhouse soils with different planting years were assessed by using single and comprehensive potential ecological risk index methods. The results showed that the soil pH of vegetable greenhouses increased, and fertility factors such as organic matter, available phosphorus, and alkali-hydrolyzable nitrogen accumulated to a certain extent compared to the control group, whereas catalase showed a decreasing trend. Correlation analysis showed that the planting years were significant positively correlated with pH (P<0.05) and organic matter (P<0.01) and significant negatively correlated with catalase (P<0.01). The amount of heavy metals in the vegetable greenhouse soils increased with the increase in planting years, among which Cu, Zn, and Cd increased most obviously, with maximum increases of 129.14%, 204.17%, and 161.11%, respectively. The proportion of acid-soluble and reducible heavy metals in the vegetable greenhouse soils also increased gradually with the planting years, and the proportion of residual heavy metals decreased correspondingly, which resulted in the heavy metals transforming into fractions easily absorbed by plants. The results of the single potential ecological risk index showed that Cd in vegetable greenhouse soils had a strong ecological risk with the increase in planting years, whereas Cu, Pb, Zn, and Ni were in the mild risk category. The comprehensive potential ecological risk index showed that the heavy metals in the vegetable greenhouse soils of different planting years have reached a strong or very strong ecological risk.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ciudades , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
16.
Sci Total Environ ; 806(Pt 2): 150646, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600987

RESUMEN

The accumulation of heavy metals in soil may introduce them to the food chain and cause health risks for humans. In the present study, 43 pairs of soil and grape samples (leaf and fruit) were collected form vineyards in the suburbs of Kaifeng city (wastewater-irrigated area in Henan Province, China) to assess the heavy metal (Pb, Cd, Cu, Zn and Ni) pollution level in soil, heavy metal accumulation in different grape tissues and the potential health risk via consumption of grapes. The results showed that the average contents of Pb, Cd, Cu, Zn and Ni in vineyard soil were 42.27, 3.08, 62.33, 262.54 and 26.60 mg/kg, respectively. Some of these soil samples were severely contaminated with Cd and Zn, with an average pollution index (Pi) of 5.14 and 0.88, respectively. Most of these soil samples were severely polluted by heavy metals, with an average Nemerow integrated pollution index (PN) of 3.77. The bioavailable heavy metals were negatively correlated with soil pH and positively correlated with soil organic matter (OM). In addition, heavy metals were more likely to accumulate in grape leaves, and their contents in grape pulp were all within the maximum permissible limit set by China (GB 2762-2017). The average bioaccumulation factors (BFs) of Pb, Cd, Cu, Zn and Ni in grape pulp were 0.007, 0.096, 0.160, 0.078 and 0.023, respectively. Health risk assessment indicated that there was no noncarcinogenic risk for grape consumers (adults and children). However, the carcinogenic risk (CR) ranged from 4.95 × 10-7 to 2.17 × 10-4, and the CR value of three grape samples was higher than 10-4, indicating that a probability of carcinogenic disease existed for humans who regularly consumed the grapes from this region.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Vitis , Adulto , Niño , China , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
17.
Environ Technol ; 43(17): 2604-2611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33577396

RESUMEN

A previous isolated Gordonia sp. (Lff) was used to degrade di-n-octyl phthalate (DOP) contamination in both aqueous solution and soil. The influence of temperature, pH, inoculum size, salt content and initial concentration of DOP on DOP degradation by Lff were analysed. The response of soil bacterial community to DOP and Lff was also analysed by Illumina MiSeq sequence method. Results showed that the optimal temperature, pH, inoculum size and salt content were 35oC, 8.0, 5% and <5%, respectively. Under the optimal condition, more than 91.25% of DOP with different initial concentrations (100-2000 mg/L) could be degraded by Lff. Kinetics analysis indicated that biodegradation of DOP by Lff could be described by first-order kinetics (R2 > 0.917) with the half-life (t1/2) changing irregularly between 0.58 and 0.83 d. In addition, Lff enhanced the removal of DOP in soil and alleviated the toxicity of DOP on soil microorganisms. Furthermore, its influence on soil bacterial community is not obvious. These results suggested that Lff was effective in remediating DOP contamination in different environments.


Asunto(s)
Bacteria Gordonia , Ácidos Ftálicos , Biodegradación Ambiental , Bacteria Gordonia/metabolismo , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Suelo
18.
Ecotoxicol Environ Saf ; 220: 112370, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058673

RESUMEN

A 6 weeks pot culture experiment was carried out to investigate the stabilization effects of a modified biochar (BCM) on metals in contaminated soil and the uptake of these metals by wheat seedlings. The results showed that the application of BCM significantly increased the soil fertility, the biomass of wheat seedling roots increased by more than 50%, and soil dehydrogenase (DHA) and catalase (CAT) activities increased by 369.23% and 12.61%, respectively. In addition, with the application of BCM, the diethylenetriaminepentaacetic acid extractable (DTPA-extractable) Cd, Pb, Cu and Zn in soil were reduced from 2.34 to 0.38 mg/kg, from 49.27 to 25.65 mg/kg, from 3.55 mg/kg to below the detection limit and from 4.05 to 3.55 mg/kg, respectively. Correspondingly, the uptake of these metals in wheat roots and shoots decreased by 62.43% and 79.83% for Cd, 73.21% and 66.32% for Pb, 57.98% and 68.92% for Cu, and 40.42% and 43.66% for Zn. Furthermore, BCM application decreased the abundance and alpha diversity of soil bacteria and changed the soil bacterial community structure dramatically. Overall, BCM has great potential for the remediation of metal-contaminated soils, but its long-term impact on soil metals and biota need further research.


Asunto(s)
Bacterias/efectos de los fármacos , Carbón Orgánico/farmacología , Metales Pesados/metabolismo , Plantones/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Triticum/efectos de los fármacos , Disponibilidad Biológica , Biomasa , Cadmio/metabolismo , Contaminación Ambiental , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Microbiología del Suelo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
19.
Huan Jing Ke Xue ; 42(3): 1403-1415, 2021 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-33742937

RESUMEN

Suzhou is a water-deficient city with water quality issues. Despite water conservation measures, emission reductions, source control, and pollution interception, water quality remains poor. To understand the total mass and distribution characteristics of carbon, nitrogen, and phosphorus bearing pollutants and inform decisions regarding river dredging, sediment and water samples were collected from 20 representative sections in the town's rivers during the spring of 2019. The depths of the sediments were measured along with the concentrations of carbon, nitrogen, and phosphorus bearing pollutants in the sediments and water, and the pollution degree was evaluated. Variations in various parameters were predicted for change water, diversion water, rainfall, and dredging. The results show that the sediment depths ranged between 22 and 1025 mm (average=266 mm), and the total mass of sediment was approximately 5.2×105 t in the ancient town rivers of Suzhou. The average proportions and concentrations of TOC, TN, NH4+-N, TP, and AP in the sediments were 3.4%, 2074 mg·kg-1, 140.2 mg·kg-1, 1765 mg·kg-1, and 57.2 mg·kg-1, respectively, indicating a moderate level of pollution. The concentration of TP in the sediments at 90% of the sampling points exceeds the national standard. Huancheng River was found to have the highest concentration of TP, suggesting that dredging shuld be targeted here first. In the water samples, the average concentrations of TOC, BOD5, COD, TN, NH4+-N, Kjeldahl nitrogen, TP, and PO43--P were 7.8, 0.6, 13.1, 2.5, 0.643, 1.3, 0.18, and 0.09 mg·L-1, respectively, indicating a severe level of pollution. Overall, water quality in these rivers falls below Class V surface water, and the concentration of TN seriously exceeds the national standard. Based on the patterns of total carbon mass and nitrogen and phosphorus bearing pollutants, the recommended order of dredging in Suzhou is the Huancheng River, the northern rivers of the ancient town, Ganjiang River, and the southern rivers of the ancient town. Under the rainfall scenario, the initial concentrations of pollutants in runoff were high, which leads to a decline in water quality. The total mass of TN in the water was reduced by 0.2 t under the change water and diversion water scenarios, and was further reduced by 4.58 t and 2.19 t, respectively, after dredging. Phosphorus bearing pollutants in the sediment were mainly imported from other sources, meaning that the total mass of TP in the water may increase following dredging activities.

20.
J Biotechnol ; 328: 106-114, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33485863

RESUMEN

A novel glucose oxidase (GOD)-perhydrolase-in situ chemical oxidation (ISCO) cascade reaction system was designed, optimized, and verified the operation feasibility in this research. Among the determined four perhydrolases, acyltransferase from Mycobacterium smegmatis (MsAcT) displayed the highest specific activity for perhydrolysis reaction (76.4 U/mg) and the lowest Km value to hydrogen peroxide (13.9 mmol/L). GOD-MsAcT cascade reaction system also displayed high catalytic efficiency. Under the optimal parameters (50:1 activity unit ratio of GOD to MsAcT, pH 8.0, 50 mmol/L of ß-d-glucose, and 15 mmol/L of glyceryl triacetate), the melanin decolorization rate using GOD-MsAcT-ISCO cascade reaction system reached 86.8 %. Kinetics of GOD-MsAcT-ISCO cascade reaction system for melanin decolorization fitted the kinetic model of Boltzmann sigmoid. As a substitutive skin whitening technology, GOD-MsAcT-ISCO cascade reaction system displayed an excellent application prospect.


Asunto(s)
Glucosa Oxidasa , Melaninas , Catálisis , Glucosa Oxidasa/metabolismo , Cinética , Melaninas/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...