Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1359403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135785

RESUMEN

Background: Despite significant benefits from targeted therapy in patients with driver mutations, inevitable drug resistance usually occurred in non-small cell lung cancer, highlighting the necessity for sequential treatments to prolong overall survival. Unfortunately, durable drug response has not been reported in posterior-line therapy of cases with acquired EML4-ALK fusion after resistance to osimertinib, urging the need of referable decision-making in clinical management. Case presentation: We present a case of a 71-year-old Chinese female, never smoker, diagnosed with invasive adenocarcinoma in the left inferior lobe of her lung, with metastases in regional lymph nodes. She received erlotinib treatment after the detection of coexistent EGFR L858R/G719S and BRAF V600E via next-generation sequencing of resected tumor tissue. Routine imaging revealed disease progression approximately 14 months after starting erlotinib treatment, followed by the detection of EGFR L858R through non-invasive liquid biopsy. Subsequently, osimertinib was administered, showing clinical activities for nearly 19 months until the emergence of an EML4-ALK fusion. Given the EML4-ALK fusion, a relatively rare resistance mechanism to osimertinib, she received third-line ensartinib treatment. One month later, alleviated tumor lesions plus normal serum marker levels demonstrated the effectiveness of ensartinib in overcoming resistance to osimertinib. Of note, the clinical response to ensartinib persisted for more than 14 months, superior to the previously reported efficacy of aletinib and crizotinib in osimertinib-failure cases. As of the last follow-up in July 2022, the patient showed no signs of recurrence and maintained a good life quality. Conclusion: We reported a third-line ensartinib therapy in a patient with lung adenocarcinoma who developed an acquired EML4-ALK fusion after sequential treatment with erlotinib and osimertinib. Given the rarity of the EML4-ALK fusion as a resistance mechanism to osimertinib, ensartinib emerges as a promising treatment option for this specific clinical challenge, offering superior efficacy and good safety.

2.
Front Immunol ; 14: 1263633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149248

RESUMEN

Introduction: Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method: In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result: Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion: Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linaje de la Célula/genética , Análisis de Expresión Génica de una Sola Célula , Leucocitos Mononucleares/patología , Necroptosis/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/genética
3.
NPJ Precis Oncol ; 7(1): 48, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231145

RESUMEN

The combination of PD-1 blockade with neoadjuvant chemotherapy (NAC) has achieved unprecedented clinical success in non-small cell lung cancer (NSCLC) compared to NAC alone, but the underlying mechanisms by which PD-1 blockade augments the effects of chemotherapy remain incompletely elucidated. Single-cell RNA sequencing was performed on CD45+ immune cells isolated from surgically resected fresh tumors of seven NSCLC patients receiving NAC or neoadjuvant pembrolizumab and chemotherapy (NAPC). Multiplex fluorescent immunohistochemistry was performed on FFPE tissues before and after NAC or NAPC from 65 resectable NSCLC patients, and results were validated with GEO dataset. NAC resulted in an increase only of CD20+ B cells, whereas NAPC increased the infiltration of CD20+ B cells, CD4+ T cells, CD4+CD127+ T cells, CD8+ T cells, CD8+CD127+ and CD8+KLRG1+ T cells. Synergistic increase in B and T cells promotes favorable therapeutic response after NAPC. Spatial distribution analysis discovered that CD8+ T cells and their CD127+ and KLRG1+ subsets were in closer proximity to CD4+ T/CD20+ B cells in NAPC versus NAC. GEO dataset validated that B-cell, CD4, memory, and effector CD8 signatures correlated with therapeutic responses and clinical outcomes. The addition of PD-1 blockade to NAC promoted anti-tumor immunity through T and B cells recruitment in the tumor microenvironment and induced tumor-infiltrating CD8+ T cells skewed toward CD127+ and KLRG1+ phenotypes, which may be assisted by CD4+ T cells and B cells. Our comprehensive study identified key immune cell subsets exerting anti-tumor responses during PD-1 blockade therapy and that may be therapeutically targeted to improve upon existing immunotherapies for NSCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA