Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(5): 2918-2927, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177963

RESUMEN

Although soil microbes play a key role in grassland ecosystem functioning, the response of their diversity to grassland degradation has not been fully investigated. Here, we used shotgun metagenomic sequencing to analyze the characteristics and influencing factors of soil microbial taxonomic and functional diversity at four different degradation stages[i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)]of subalpine meadow in the Mount Wutai. The results showed that there were significant differences in the relative abundances of Actinobacteria, Bacteroidetes, Nitrospirae, and Parcubacteria among the four subalpine grasslands with different degradation degrees (P<0.05).Compared with that in ND, the degraded meadows increased the proportion of genes related to carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, citric acid cycle, propanoate metabolism, butanoate metabolism, and fatty acid metabolism (P<0.05), indicating that the degradation of subalpine grassland changed the metabolic potential of energy metabolism and the nutrient cycle of the soil microbial community. Grassland degradation changed soil microbial taxonomic and functional α diversity, especially in MD and HD.Grassland degradation resulted in significant changes in the taxonomic and functional compositions of the microbial communities. The total nitrogen, pH, and soil organic carbon significantly affected the taxonomic and functional compositions of the microbial communities.The ß diversity of the plant community was significantly correlated with the taxonomic and functional ß diversity of the microbial community (P<0.05), indicating strong coupling. The results of this study revealed the changes and driving mechanisms of subsurface microbial taxonomic and functional diversity during grassland degradation, which can provide a theoretical basis for subalpine meadow protection and ecological restoration.


Asunto(s)
Ecosistema , Microbiota , Pradera , Carbono , Suelo , Microbiología del Suelo , Bacterias/genética
2.
Huan Jing Ke Xue ; 43(6): 3328-3337, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686803

RESUMEN

Grassland degradation has become a worldwide ecological problem. Although soil microorganisms, as the main participants in the process of grassland degradation, play a key role in maintaining ecosystem function and improving soil productivity, little is known about the changes in microbial communities caused by grassland degradation and their relationship with soil properties and plant communities. In this study, we used Illumina MiSeq sequencing to analyze the soil fungal communities of subalpine meadow soil at four different degradation stages[i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD)] on Mount Wutai. The results showed that Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla of soil fungi in the subalpine meadow, regardless of degradation stage. LEfSe showed that the subalpine meadows with different degradation degrees were enriched with different biomarkers. Compared with ND, MD and HD were enriched with more pathogenic fungi. Moreover, HD apparently decreased the richness and Shannon indexes of soil fungal communities compared with those of ND. Non-metric multidimensional scaling (NMDS) and similarity analysis (ANOSIM) indicated that the compositions and structures of fungal communities were significantly different among meadows with different degradation degrees (P<0.05). Redundancy analysis (RDA) showed that soil water content, total nitrogen, plant richness, and ammonium nitrogen were significantly correlated with the compositions and structures of fungal communities (P<0.05). There were significant correlations between α diversity and ß diversity between plant and fungal communities (P<0.05), indicating strong coupling. The results of our study provide a theoretical basis for further research on the changes in soil fungal communities and their driving mechanism in different degradation stages of subalpine meadows.


Asunto(s)
Microbiota , Micobioma , Hongos/genética , Pradera , Humanos , Nitrógeno , Plantas , Suelo/química , Microbiología del Suelo
3.
ACS Appl Mater Interfaces ; 12(44): 49636-49647, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33080131

RESUMEN

Hybrid organic-inorganic perovskite solar cells (HOIPs), especially CH3NH3PbI3 (MAPbI3), have received tremendous attention due to their excellent power conversion efficiency (25.2%). However, two fundamental hurdles, long-term stability and lead (Pb) toxicity, prevent HOIPs from practical applications in the solar industry. To overcome these issues, compositional engineering has been used to modify cations at A- and B-sites and anions at the X-site in the general form ABX3. In this work, we used the density functional theory (DFT) to incorporate Rb, Cs, and FA at the A-site to minimize the volatile nature of MA, while the highly stable Ca2+ and Sr2+ were mixed with the less stable Ge2+ and Sn2+ at the B-site to obtain a Pb-free perovskite. To further enhance the stability, we mixed the X-site anions (I/Br). Through this approach, we introduced 20 new perovskite species to the lead-free perovskite family and 7 to the lead-containing perovskite family. The molecular dynamic (MD) simulations, enthalpy formation, and tolerance and octahedral factor study confirm that all of the perovskite alloys we introduced here are as stable as pristine MAPbI3. All Pb-free perovskites have suitable and direct band gaps (1.42-1.77 eV) at the Γ-point, which are highly desirable for solar cell applications. Most of our Pb-free perovskites have smaller effective masses and exciton binding energies. Finally, we show that the introduced perovskites have high absorption coefficients (105 cm-1) and strong absorption efficiencies (above 90%) in a wide spectral range (300-1200 nm), reinforcing their significant potential applications. This study provides a new way of searching for stable lead-free perovskites for sustainable and green energy applications.

4.
Chem Sci ; 10(44): 10381-10387, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32110327

RESUMEN

Inspired by the successful synthesis of Fe/Cu-5,5'-bis(4-pyridyl)(2,2'-bipirimidine) (PBP), a family of two-dimensional (2D) metal-organic frameworks (MOFs) with the Shastry-Sutherland lattice, i.e., transition metal (TM)-PBP (TM = Cr, Mn, Fe, Co, Ni, Cu, Zn) has been systematically investigated by means of first-principles density functional theory calculations and Monte Carlo simulations. Mn-PBP is discovered to be the first ferromagnetic 2D MOF with the Shastry-Sutherland lattice and the Curie temperature is predicted to be about 105 K, while Fe-PBP, TM-PBP (TM = Cr, Co, Ni) and TM-PBP (TM = Cu, Zn) are found to be stripe-order antiferromagnetic, magnetic-dimerized and nonmagnetic, respectively. The electronic structure calculations reveal that TM-PBP MOFs are semiconductors with band gaps ranging from 0.12 eV to 0.85 eV, which could be easily modulated by various methods. Particularly, Mn-PBP would exhibit half-metallic behavior under compressive strain or appropriate electron/hole doping and a Mn-PBP based spintronic device has been proposed. This study not only improves the understanding of the geometric, electronic and magnetic properties of the 2D TM-PBP MOF family, but also provides a novel spin lattice playground for the research of 2D magnetic systems, which has diverse modulating possibilities and rich potential applications.

6.
Sci Rep ; 6: 19830, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26830330

RESUMEN

By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm(2)V(-1)S(-1)), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young's modulus (20-40 GPa) and an ultralow lattice thermal conductivity (<3 Wm(-1)K(-1) at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson's ratio of -0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.

7.
Sci Rep ; 4: 6946, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25374306

RESUMEN

We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Young's modulus and negative Poisson's ratio. A sensitive electronic structure of BP makes it transform among metal, direct and indirect semiconductors under strain. The maximal figure of merit ZT of BP is found to be 0.72 at 800 K that could be enhanced to 0.87 by exerting an appropriate strain, revealing BP could be a potential medium-high temperature TE material. Such strain-induced enhancements of TE performance are often observed to occur at the boundary of the direct-indirect band gap transition, which can be attributed to the increase of degeneracy of energy valleys at the transition point. By comparing the structure of BP with SnSe, a family of potential TE materials with hinge-like structure are suggested. This study not only exposes various novel properties of BP under strain, but also proposes effective strategies to seek for better TE materials.

8.
Phys Chem Chem Phys ; 15(21): 8179-85, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23604005

RESUMEN

By means of first-principles calculations combined with the tight-binding approximation, the strain-induced semiconductor-semimetal transition in graphdiyne is discovered. It is shown that the band gap of graphdiyne increases from 0.47 eV to 1.39 eV with increasing the biaxial tensile strain, while the band gap decreases from 0.47 eV to nearly zero with increasing the uniaxial tensile strain, and Dirac cone-like electronic structures are observed. The uniaxial strain-induced changes of the electronic structures of graphdiyne come from the breaking of geometrical symmetry that lifts the degeneracy of energy bands. The properties of graphdiyne under strains are found to differ remarkably from that of graphene.

9.
J Phys Condens Matter ; 25(12): 125504, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23448896

RESUMEN

The present investigation searched for new boron nitride (BN) polymorphs by means of first-principles simulations. The ab initio random structure searching strategy was implemented. The electronic and mechanical properties and equation of states of three new metastable BN crystal forms with equilibrium energies close to the most stable B4N4 form, c-BN, are presented. Results show either dynamically stable semiconductors or insulators, one of which is even slightly harder than c-BN. The equation of states is also presented and a phase transition is predicted.

10.
Phys Rev Lett ; 106(15): 155703, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21568576

RESUMEN

A structurally stable crystalline carbon allotrope is predicted by means of the first-principles calculations. This allotrope can be derived by substituting each atom in diamond with a carbon tetrahedron, and possesses the same space group Fd3m as diamond, which is thus coined as T-carbon. The calculations on geometrical, vibrational, and electronic properties reveal that T-carbon, with a considerable structural stability and a much lower density 1.50 g/cm3, is a semiconductor with a direct band gap about 3.0 eV, and has a Vickers hardness 61.1 GPa lower than diamond but comparable with cubic boron nitride. Such a form of carbon, once obtained, would have wide applications in photocatalysis, adsorption, hydrogen storage, and aerospace materials.


Asunto(s)
Carbono/química , Cristalización/métodos , Diamante/química , Modelos Químicos , Adsorción , Compuestos de Boro/química , Electrónica , Dureza , Hidrógeno , Materiales Manufacturados , Vibración
11.
J Phys Condens Matter ; 22(18): 186004, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21393698

RESUMEN

The spin transfer effect in a ferromagnet-quantum dot (insulator)-ferromagnet Aharonov-Bohm (AB) ring system with Rashba spin-orbit (SO) interactions is investigated by means of the Keldysh nonequilibrium Green function method. It is found that both the magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet electrode can be effectively controlled by changing the magnetic flux threading the AB ring or the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical current and spin current are uncovered to oscillate with the magnetic flux. The present results are expected to be useful for information storage in nanospintronics.

12.
Phys Chem Chem Phys ; 11(42): 9696-702, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19851546

RESUMEN

Based on ab initio calculations, we have studied the geometrical, electronic properties and chemical bonding of boron fullerenes B(32+8k) (0 < or = k < or = 7) with four-membered rings and B(32) solid phases. The relative energies and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated, showing that the stabilities grow with the increase of fullerene size, where the smallest cage B(32) bears the largest HOMO-LUMO gap. The frontier orbitals of B(32+8k) show some similarities with those of the corresponding carbon fullerenes C(24+6k), implying that they may have similar chemical properties. It is found that B(32) cages can condense to form solid phases of simple cubic (sc), face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, where the bct phase is observed to be the most stable. Electronic structure calculations reveal that the sc, fcc and bcc phases of B(32) solids are metallic, but the bct phase is a semimetal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...