Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neuroimage Clin ; 37: 103361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36871404

RESUMEN

OBJECTIVE: We aimed to explore the pathogenesis of traumatic coma related to functional connectivity (FC) within the default mode network (DMN), within the executive control network (ECN) and between the DMN and ECN and to investigate its capacity for predicting awakening. METHODS: We carried out resting-state functional magnetic resonance imaging (fMRI) examinations on 28 traumatic coma patients and 28 age-matched healthy controls. DMN and ECN nodes were split into regions of interest (ROIs), and node-to-node FC analysis was conducted on individual participants. To identify coma pathogenesis, we compared the pairwise FC differences between coma patients and healthy controls. Meanwhile, we divided the traumatic coma patients into different subgroups based on their clinical outcome scores at 6 months postinjury. Considering the awakening prediction, we calculated the area under the curve (AUC) to evaluate the predictive ability of changed FC pairs. RESULTS: We found a massive pairwise FC alteration in the patients with traumatic coma compared to the healthy controls [45% (33/74) pairwise FC located in the DMN, 27% (20/74) pairwise FC located in the ECN, and 28% (21/74) pairwise FC located between the DMN and ECN]. Moreover, in the awake and coma groups, there were 67% (12/18) pairwise FC alterations located in the DMN and 33% (6/18) pairwise FC alterations located between the DMN and ECN. We also indicated that pairwise FC that showed a predictive value of 6-month awakening was mainly located in the DMN rather than in the ECN. Specifically, decreased FC between the right superior frontal gyrus and right parahippocampal gyrus (in the DMN) showed the highest predictive ability (AUC = 0.827). CONCLUSION: In the acute phase of severe traumatic brain injury (sTBI), the DMN plays a more prominent role than the ECN and the DMN-ECN interaction in the emergence of traumatic coma and the prediction of 6-month awakening.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Coma Postraumatismo Craneoencefálico , Humanos , Coma/diagnóstico por imagen , Coma/etiología , Función Ejecutiva , Red en Modo Predeterminado , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
2.
J Neurotrauma ; 40(13-14): 1402-1414, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36994490

RESUMEN

Abstract Making an appropriate diagnosis and administering effective treatment for hydrocephalus in patients with severe disorders of consciousness (DOC) remains controversial and difficult. Given that the typical symptoms are usually concealed by the limited behavioral responsiveness of patients with severe DOC, hydrocephalus diagnosis is likely to be missed in the clinic. Even if not, the presence of hydrocephalus may reduce the likelihood of DOC recovery, posing a conundrum for clinicians. From December 2013 to January 2023, the clinical data and therapeutic schedule of hydrocephalus in patients with severe DOC at Huashan Hospital's Neurosurgical Emergency Center were studied retrospectively. Sixty-eight patients (mean age [± SD] 52.53 ± 17.03 years, 35 males and 33 females) with severe DOC were included. The hydrocephalus was discovered after computed tomography (CT) or magnetic resonance imaging (MRI) revealed enlarged ventricles in the patients. During hospitalization, patients underwent a surgical treatment that included a ventriculoperitoneal (V-P) shunt and/or cranioplasty (CP) implantation. Following the surgery, an individualized V-P pressure was established based on the patient's ventricle size and neurological function variation. To account for the improvement in consciousness in patients with severe DOC, Glasgow Coma Scale (GCS) and Coma Recovery Scale-Revised (CRS-R) assessments were performed before and after hydrocephalus treatment. All patients with severe DOC had varying degrees of ventricular enlargement, deformation, and poor brain compliance. Approximately 60.3% (41/68) of them had low- or negative-pressure hydrocephalus (LPH or NegPH). Of the patients, 45.5% (31/68) had a one-stage V-P shunt and CP operation performed concurrently, whereas the remaining 37 patients had a single V-P shunt operation performed independently. Besides two patients with DOC who developed surgical complications, 92.4% (61/66) of the survivors showed an improvement in consciousness after hydrocephalus treatment. In patients with severe DOC, LPH or NegPH was common. Secondary hydrocephalus in patients with DOC had been largely ignored, hampering their neurological rehabilitation. Even months or years after the onset of severe DOC, active treatment of hydrocephalus can significantly improve patients' consciousness and neurological function. This study summarized several evidence-based treatment experiences of hydrocephalus in patients with DOC.


Asunto(s)
Trastornos de la Conciencia , Hidrocefalia , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Trastornos de la Conciencia/etiología , Trastornos de la Conciencia/terapia , Trastornos de la Conciencia/diagnóstico , Estado de Conciencia , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/etiología , Hidrocefalia/cirugía , Resultado del Tratamiento
3.
Neurosci Bull ; 39(1): 138-162, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35804219

RESUMEN

Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.


Asunto(s)
Lesiones Encefálicas , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/métodos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/etiología , Lesiones Encefálicas/complicaciones , Estado de Conciencia , Neuroimagen
4.
Front Aging Neurosci ; 14: 870957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547618

RESUMEN

Multiple sclerosis (MS) is an incurable and progressive neurodegenerative disease that affects more than 2.5 million people worldwide and brings tremendous economic pressures to society. However, the pathophysiology of MS is still not fully elucidated, and there is no effective treatment. Demyelination is thought to be the primary pathophysiological alteration in MS, and our previous study found abnormal lipid metabolism in the demyelinated corpus callosum. Growing evidence indicates that central nervous system (CNS) demyelinating diseases never result from one independent factor, and the simultaneous participation of abnormal lipid metabolism, oxidative stress, and neuroinflammation could potentiate each other in the pathogenesis of MS. Therefore, a single omics analysis cannot provide a full description of any neurodegenerative disease. It has been demonstrated that oxidative stress and neuroinflammation are two reciprocal causative reasons for the progression of MS disease. However, the potential crosstalk between oxidative stress and neuroinflammation remains elusive so far. With an integrated analysis of targeted lipidomics and transcriptomics, our research presents the potential interaction between abnormalities of lipid metabolism, mitochondrial dysfunction, oxidative stress, and neuroinflammation in CNS demyelinating diseases. The findings of this paper may be used to identify possible targets for the therapy of CNS demyelinating diseases.

5.
Front Immunol ; 13: 855701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392083

RESUMEN

Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Humanos , Inflamación , Enfermedades Neuroinflamatorias , Proteómica
6.
Neurol Sci ; 43(7): 4363-4372, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35199252

RESUMEN

OBJECTIVE: To develop and validate a radiomic prediction model using initial noncontrast computed tomography (CT) at admission to predict in-hospital mortality in patients with traumatic brain injury (TBI). METHODS: A total of 379 TBI patients from three cohorts were categorized into training, internal validation, and external validation sets. After filtering the unstable features with the minimum redundancy maximum relevance approach, the CT-based radiomics signature was selected by using the least absolute shrinkage and selection operator (LASSO) approach. A personalized predictive nomogram incorporating the radiomic signature and clinical features was developed using a multivariate logistic model to predict in-hospital mortality in patients with TBI. The calibration, discrimination, and clinical usefulness of the radiomics signature and nomogram were evaluated. RESULTS: The radiomic signature consisting of 12 features had areas under the curve (AUCs) of 0.734, 0.716, and 0.706 in the prediction of in-hospital mortality in the internal and two external validation cohorts. The personalized predictive nomogram integrating the radiomic and clinical features demonstrated significant calibration and discrimination with AUCs of 0.843, 0.811, and 0.834 in the internal and two external validation cohorts. Based on decision curve analysis (DCA), both the radiomic features and nomogram were found to be clinically significant and useful. CONCLUSION: This predictive nomogram incorporating the CT-based radiomic signature and clinical features had maximum accuracy and played an optimized role in the early prediction of in-hospital mortality. The results of this study provide vital insights for the early warning of death in TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Nomogramas , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Mortalidad Hospitalaria , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
7.
Front Neurol ; 12: 652931, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177761

RESUMEN

Background: PYGL has been reported as a glycogen degradation-related gene, which is up-regulated in many tumors. This study was designed to investigate the predictive value of high PYGL expression in patients with gliomas through bioinformatics analysis of the gene transcriptome and the single-cell sequencing data. Methods: The gene transcriptome data of 595 glioma patients from the TCGA database and the single-cell RNA sequencing data of 7,930 GBM cells from the GEO database were included in the study. Differential analysis was used to find the distribution of expression of PYGL in different groups of glioma patients. OS analysis was used to assess the influence of the high expression of PYGL on the prognosis of patients. The reliability of its prediction was evaluated by the AUC of ROC and the C-index. The GSEA be used to reveal potential mechanisms. The single-cell analysis was used to observe the high expression of PYGL in different cell groups to further analyze the mechanism of its prediction. Results: Differential analysis identified the expression level of PYGL is positively associated with glioma malignancy. OS analysis and Cox regression analyses showed high expression of PYGL was an independent factor for poor prognosis of gliomas (p < 0.05). The AUC values were 0.838 (1-year ROC), 0.864 (3-year ROC) and 0.833 (5-year ROC). The C index was 0.81. The GSEA showed that gene sets related to MTORC1 signaling, glycolysis, hypoxia, PI3K/AKT/mTOR signaling, KRAS signaling up and angiogenesis were differentially enriched in the high PYGL expression phenotype. The single-cell sequencing data analysis showed TAMs and malignant cells in GBM tissues expressed a high level of PYGL. Conclusion: The high expression of PYGL is an independent predictor of poor prognosis in patients with glioma.

8.
Front Neurol ; 12: 666427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177772

RESUMEN

Background: Nervus intermedius neuralgia (NIN), known as geniculate neuralgia (GN), is an uncommon cranial nerve disease caused by an offending vessel compressing the nervus intermedius (NI). Microvascular decompression (MVD) has now become a valued treatment approach for NIN because it can resolve neurovascular conflict (NVC) at the root entry zone of the NI. In the era of continuously optimizing and improving the surgical technique of MVD, further minimization of all possible postoperative complications is not only welcome but also necessary. Objective: The aim of this work is to assess the postoperative outcome of direct visualization of the NI during the MVD procedure. Methods: This study retrospectively reviewed the clinical records of a group of seven consecutive patients with NIN who underwent MVD in the period of 2013-2020 in our clinic and 16 studies reported NIN patients who underwent MVD in the period of 2007-2020. Results: In total, 91.3% of all patients experienced immediate and complete relief of cranial neuralgia after MVD. Six of 23 patients have experienced direct visualization of the NI intraoperatively, and 66.7% of those patients had complications such as facial paralysis, dysacousia, or a combination of these conditions postoperatively. Slight surgical approach-related complications such as complaints associated with excessive drainage of cerebrospinal fluid (CSF), nausea and vertigo, and delayed wound union were observed in 80% of the remaining 15 patients, and these symptoms are totally relieved in the telephone and outpatient follow-up after 6 months. Conclusion: Our case series shows that MVD produced immediate pain relief in the majority of NIN patients. MVD carries surgical risk, especially in patients who experience direct visualization of the NI after mechanical stretch and blunt dissection in surgical procedures. Attempts to avoid mechanical stretch and blunt dissection of the compressed nerve were important for intraoperative neuroprotection, especially facial nerve protection.

9.
Comput Math Methods Med ; 2021: 5511598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953790

RESUMEN

Traumatic brain injury (TBI) is a major cause of morbidity and mortality, both in adult and pediatric populations. However, the dynamic changes of gene expression profiles following TBI have not been fully understood. In this study, we identified the differentially expressed genes (DEGs) following TBI. Remarkably, Serpina3n, Asf1b, Folr1, LOC100366216, Clec12a, Olr1, Timp1, Hspb1, Lcn2, and Spp1 were identified as the top 10 with the highest statistical significance. The weighted gene coexpression analysis (WGCNA) identified 12 functional modules from the DEGs, which showed specific expression patterns over time and were characterized by enrichment analysis. Specifically, the black and turquoise modules were mainly involved in energy metabolism and protein translation. The green yellow and yellow modules including Hmox1, Mif, Anxa2, Timp1, Gfap, Cd9, Gja1, Pdpn, and Gpx1 were related to response to wounding, indicating that expression of these genes such as Hmox1, Anxa2, and Timp1 could protect the brains from brain injury. The green yellow module highlighted genes involved in microglial cell activation such as Tyrobp, Cx3cr1, Grn, Trem2, C1qa, and Aif1, suggesting that these genes were responsible for the inflammatory response caused by TBI. The upregulation of these genes has been validated in an independent dataset. These results indicated that the key genes in microglia cell activation may serve as a promising therapeutic target for TBI. In summary, the present study provided a full view of the dynamic gene expression changes following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Redes Reguladoras de Genes , Proteínas de Fase Aguda/genética , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/lesiones , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Biología Computacional , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Microglía/metabolismo , Microglía/patología , Ratas , Serpinas/genética , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/genética
10.
Math Biosci Eng ; 18(2): 1201-1214, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33757183

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, whose symptoms ranging from mild to severe, even life-threatening. However, specific cell types and key regulators involved in traumatic brain injury have not been well elucidated. In this study, utilizing single-cell RNA-seq (scRNA-seq) data from mice with TBI, we have successfully identified and characterized 13 cell populations including astrocytes, oligodendrocyte, newly formed oligodendrocytes, microglia, two types of endothelial cells, five types of excitatory and two types of inhibitory neurons. Differential expression analysis and gene set enrichment analysis (GSEA) revealed the upregulation of microglia and endothelial markers, along with the downregulation of markers of excitatory neurons in TBI. The cell-cell communication analysis revealed that microglia and endothelial cell might interact through the interaction of Icam1-Il2rg and C1qa-Cd93, and microglia might also communicate with each other via Icam1-Itagm. The autocrine ligand-receptor in microglia might result in activation of TYROBP causal network via Icam1-Itgam. The cell-cell contact between microglia and endothelial cell might activate integrin signaling pathways. Moreover, we also found that genes involved in microglia activation were highly downregulated in Tyrobp/Dap12-deficient microglia, indicating that the upregulation of Tyrobp and TYROBP causal network in microglia might be a candidate therapeutic target in TBI. In contrast, the excitatory neurons were involved in maintaining normal brain function, and their inactivation might cause dysfunction of nervous system in TBI patients. In conclusion, the present study has discerned major cell types such as microglia, endothelial cells and excitatory neurons, and revealed key regulator such as TYROBP, C1QA, and CD93 in TBI, which shall improve our understanding of the pathogenesis of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , ARN , Animales , Lesiones Traumáticas del Encéfalo/genética , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
11.
Front Surg ; 7: 590956, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195392

RESUMEN

Background: Primary squamous cell carcinoma of the thyroid (PSCCT) is an uncommon malignancy that is difficult to diagnose and differentiate. There is no consensus for the early clinical, radiological, or ultrasonic identification of PSCCT before pathological changes are observed in patients. There is also no suitable treatment due to the absence of a definite diagnosis. Case Presentation: A 76-year-old female patient complained about a rapidly growing cervical mass, dyspnea, dysphagia, and a change in her voice. Based on the results of thyroid ultrasound, fine-needle aspiration, and plain and enhanced CT, the patient was initially diagnosed with anaplastic thyroid carcinoma (ATC). Thereafter, we removed the mass that was the patient's main complaint. The gross examination of the patient's symptoms also supported our previous diagnosis. However, her disease was finally diagnosed as PSCCT, according to the histopathology and immunohistochemistry findings of the mass. Conclusion: Our case highlights the need for a comprehensive framework in the management of PSCCT. The more auxiliary examinations (e.g., ultrasonographic, radiology, or biopsy examinations) we take, the more likely we are to identify this disease. Immunohistochemistry is currently the preferred examination for the diagnosis of PSCCT, while surgical resection combined with radio-sensitizing therapy and adjuvant chemotherapy is the main treatment method for PSCCT.

12.
Front Neurol ; 11: 81, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161563

RESUMEN

Paroxysmal sympathetic hyperactivity (PSH) has predominantly been described after traumatic brain injury (TBI), which is associated with hyperthermia, hypertension, tachycardia, tachypnea, diaphoresis, dystonia (hypertonia or spasticity), and even motor features such as extensor/flexion posturing. Despite the pathophysiology of PSH not being completely understood, most researchers gradually agree that PSH is driven by the loss of the inhibition of excitation in the sympathetic nervous system without parasympathetic involvement. Recently, advances in the clinical and diagnostic features of PSH in TBI patients have reached a broad clinical consensus in many neurology departments. These advances should provide a more unanimous foundation for the systematic research on this clinical syndrome and its clear management. Clinically, a great deal of attention has been paid to the definition and diagnostic criteria, epidemiology and pathophysiology, symptomatic treatment, and prevention and control of secondary brain injury of PSH in TBI patients. Potential benefits of treatment for PSH may result from the three main goals: eliminating predisposing causes, mitigating excessive sympathetic outflow, and supportive therapy. However, individual pathophysiological differences, therapeutic responses and outcomes, and precision medicine approaches to PSH management are varied and inconsistent between studies. Further, many potential therapeutic drugs might suppress manifestations of PSH in the process of TBI treatment. The purpose of this review is to present current and comprehensive studies of the identification of PSH after TBI in the early stage and provide a framework for symptomatic management of TBI patients with PSH.

13.
Aging (Albany NY) ; 12(6): 5168-5182, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32208364

RESUMEN

To investigate the whole functional brain networks of active Cushing disease (CD) patients about topological parameters (small world and rich club et al.) and compared with healthy control (NC). Nineteen active CD patients and twenty-two healthy control subjects, matched in age, gender, and education, underwent resting-state fMRI. Graph theoretical analysis was used to calculate the functional brain network organizations for all participants, and those for active CD patients were compared for and NCs. Active CD patients revealed higher global efficiency, shortest path length and reduced cluster efficiency compared with healthy control. Additionally, small world organization was present in active CD patients but higher than healthy control. Moreover, rich club connections, feeder connections and local connections were significantly decreased in active CD patients. Functional network properties appeared to be disrupted in active CD patients compared with healthy control. Analyzing the changes that lead to abnormal network metrics will improve our understanding of the pathophysiological mechanisms underlying CD.


Asunto(s)
Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/fisiopatología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...